Valence bond ground states in isotropic quantum antiferromagnets

Springer Science and Business Media LLC - Tập 115 - Trang 477-528 - 1988
Ian Affleck1, Tom Kennedy2, Elliott H. Lieb2, Hal Tasaki2
1Department of Physics, University of British Columbia, Vancouver, Canada
2Department of Physics, Princeton University, Princeton, USA

Tóm tắt

Haldane predicted that the isotropic quantum Heisenberg spin chain is in a “massive” phase if the spin is integral. The first rigorous example of an isotropic model in such a phase is presented. The Hamiltonian has an exactSO(3) symmetry and is translationally invariant, but we prove the model has a unique ground state, a gap in the spectrum of the Hamiltonian immediately above the ground state and exponential decay of the correlation functions in the ground state. Models in two and higher dimension which are expected to have the same properties are also presented. For these models we construct an exact ground state, and for some of them we prove that the two-point function decays exponentially in this ground state. In all these models exact ground states are constructed by using valence bonds.

Tài liệu tham khảo

Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett.59, 799–802 (1987) Affleck, I.: Large-n limit ofSU(n) quantum spin chains. Phys. Rev. Lett.54, 966–969 (1985) Affleck, I.: Exact critical exponents for quantum spin chains, nonlinear σ-models at θ=π and the quantum Hall effect. Nucl. Phys. B265, 409–447 (1986) Affleck, I., Haldane, F.D.M.: Critical theory of quantum spin chains. To appear in Phys. Rev. B. Affleck, I., Lieb, E.H.: A proof of part of Haldane's conjecture on spin chains. Lett. Math. Phys.12, 57–69 (1986) Aizenman, M., Lieb, E.H.: The third law of thermodynamics and the degeneracy of the ground state for lattice systems. J. Stat. Phys.24, 279–297 (1981) Anderson, P.: Thes=1/2 antiferromagnetic ground state: Néel antiferromagnet or quantum liquid. Mat. Res. Bull.8, 153 (1973) Anderson, P.: The resonating valence bond state in La2CuO4 and superconductivity. Science235, 1196–1198 (1987) Babudjian, J.: Exact solution of the one-dimensional isotropic Heisenberg chain with arbitrary spinsS. Phys. Lett.90, 479–482 (1982) Babudjian, J.: Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model. Nucl. Phys. B215, 317–336 (1983) Bethe, H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys.71, 205–226 (1931) Blote, H.J., Nightingale, M.P.: Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte-Carlo calculation. Phys. Rev. B33, 659–661 (1986) Bonner, J.C.: Private communication Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. II. Berlin, Heidelberg, New York: Springer 1981 van den Broek, P.M.: Exact value of the ground state energy of the linear antiferromagnetic Heisenberg chain with nearest and next-nearest neighbour interactions. Phys. Lett.77, 261–262 (1980) Buyers, W., Morra, R., Armstrong, R., Hogan, M., Gerlack, P., Hirakawa, K.: Experimental evidence for the Haldane gap in a spin-1, nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett.56, 371–374 (1986) Caspers, W.J.: Exact ground states for a class of linear antiferromagnetic spin systems. Physica115, 275–280 (1982) Caspers, W.J., Magnus, W.: Exact ground states for a class of linear quantum spin systems. Physica119, 291–294 (1983) Caspers, W.J., Magnus, W.: Some exact excited states in a linear antiferromagnetic spin system. Phys. Lett.88, 103–105 (1982) Chang, K.: Calculation of the singlet-singlet gap in spin-1, antiferromagnetic quantum spin chains using valence bond diagrams. Senior thesis, Princeton University (1987) Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys.18, 335–383 (1978) Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys.50, 79–95 (1976) Haldane, F.D.M.: Continuum dynamics of the 1 -d Heisenberg antiferromagnet: identification with theO(3) nonlinear sigma model. Phys. Lett.93, 464–468 (1983) Haldane, F.D.M.: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solutions of the one-dimensional easy-axis Néel state. Phys. Rev. Lett.50, 1153–1156 (1983) Haldane, F.D.M.: “θ physics” and quantum spin chains (abstract). J. Appl. Phys.57, 3359 (1985) Jordão Neves, E., Fernando Perez, J.: Long range order in the ground state of two-dimensional antiferromagnets. Phys. Lett.114, 331–333 (1986) Klein, D.J.: Exact ground states for a class of antiferromagnetic Heisenberg models with short-range interactions. J. Phys. A15, 661–671 (1982) Kulish, P.P., Reshetikhin, N.Yu., Sklyanin, E.K.: Yang-Baxter equation and representation theory. I. Lett. Math. Phys.5, 393–403 (1981) Kulish, P.P., Sklyanin, E.K.: Quantum spectral transform method: recent developments. In: Integrable quantum field theories. Ehlers, J., Hepp, K., Kippenhahn, R., Weidenmüllen, H.A., Zittartz, J. (eds.). Lecture Notes in Physics, Vol. 151, pp. 61–119. Berlin, Heidelberg, New York: Springer 1982 Lieb, E.H., Mattis, D.J.: Ordering energy levels of interacting spin systems. J. Math. Phys.3, 749–751 (1962) Majumdar, C.K., Ghosh, D.K.: On next nearest-neighbor interaction in linear chain. I, II. J. Math. Phys.10, 1388–1402 (1969) Majumdar, C.K.: Antiferromagnetic model with known ground state. J. Phys. C3, 911–915 (1970) Nienhuis, B.: Exact critical point and critical exponents ofO(n) models in two dimensions. Phys. Rev. Lett.49, 1062–1064 (1982) Oitmaa, J., Parkinson, J.B., Bonner, J.C.: Crossover effects in a general spin-1-bilinear-biquadratic exchange Hamiltonian. J. Phys. C19, L595-L601 (1986) Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York: Academic Press 1972 Renard, J.P., Verdaguer, M., Regnault, L.P., Erkelens, W.C., Rossatmignod, J., Stirling, W.G.: Presumption for a quantum energy gap in the quasi-one-dimensionals=1 Heisenberg antiferromagnet Ni[C2H8N2]2NO2[ClO4]. To appear in Europhys. Lett. Schulz, H.J., Ziman, T.: Finite-length calculations of η and phase diagrams of quantum spin chains. Phys. Rev. B33, 6545–6548 (1986) Shastry, B.S., Sutherland, B.: Exact ground state of a quantum mechanical antiferromagnet. Physica108, 1069–1070 (1981) Shastry, B.S., Sutherland, B.: Excitation spectrum of a dimerized next-neighbor antiferromagnetic chain. Phys. Rev. Lett.47, 964–967 (1981) Shastry, B.S., Sutherland, B.: Exact solution of a large class of interacting quantum systems exhibiting ground state singularities. J. Stat. Phys.33, 477–484 (1983) Solyom, J.: Competing bilinear and biquadratic exchange couplings in spin 1 Heisenberg chains. Institute Laue-Langevin preprint Takhtajan, L.: The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins. Phys. Lett.87, 479–482 (1982) Wells, A.F.: Three-dimensional nets and polyhedra. New York: Wiley 1977 Wreszinsky, W.F.: Charges and symmetries in quantum theories without locality. Fortschr. Phys.35, 379–413 (1987) Landau, L., Fernando-Perez, J., Wreszinski, W.F.: Energy gap, clustering, and the Goldstone theorem in statistical mechanics. J. Stat. Phys.26, 755–766 (1981) Wreszinski, W.F.: Goldstone's theorem for quantum spin systems of finite range. J. Math. Phys.17, 109–111 (1976) Arovas, D.P., Auerbach, A., Haldane, F.D.M.: Extended Heisenberg models of antiferromagnetism: Analogies to the quantum Hall effect. University of Chicago preprint