Ferroelectric and dielectric study in 0.78Na0.5Bi0.5TiO3-0.2SrTiO3-0.02K0.5Na0.5NbO3 lead free ceramic

Materials Research Bulletin - Tập 142 - Trang 111407 - 2021
A. Singha1, S. Praharaj1, S.K. Rout2, R. Verma2, D. Rout1
1Department of Physics, School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, 751 024, Odisha, India
2Department of Applied Physics, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India

Tài liệu tham khảo

Rödel, 2009, Perspective on the development of lead‐free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x Acosta, 2014, Temperature‐and frequency‐dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 lead‐free incipient piezoceramic, J. Am. Ceram. Soc., 97, 1937, 10.1111/jace.12884 Liu, 2018, Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases, J. Euro. Ceram. Soc., 38, 4939, 10.1016/j.jeurceramsoc.2018.07.029 Park, 1999, Lanthanum-substituted bismuth tit anate for use in non-volatile memories, Nature, 401, 682, 10.1038/44352 Kandula, 2018, Multifunctional Nd3+ substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties, RSC Adv., 8, 15282, 10.1039/C8RA01349G Isupov, 2005, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions, Ferroelectrics, 315, 123, 10.1080/001501990910276 Zuo, 2008, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics, J. Eur. Ceram. Soc., 28, 871, 10.1016/j.jeurceramsoc.2007.08.011 Pham, 2010, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64, 2219, 10.1016/j.matlet.2010.07.048 Kang, 2015, (1−x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications, J. Eur. Ceram. Soc., 35, 2057, 10.1016/j.jeurceramsoc.2014.12.036 Yoshii, 2006, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Jpn. J. Appl., 45, 4493, 10.1143/JJAP.45.4493 Praharaj, 2020, Estimation of relaxor behavior in Sr2+ doped Na0.5Bi0.5TiO3 ceramics, J. Mater. Sci.: Mater. Electron., 31, 5554 Acosta, 2014, Temperature‐and frequency‐dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 lead‐free incipient piezoceramic, J. Am. Ceram. Soc., 97, 1937, 10.1111/jace.12884 Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100−x)Na0.5Bi0.5TiO3–xSrTiO3 system, J. Appl. Phys., 108, 10.1063/1.3490781 Cao, 2016, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J. Eur. Ceram. Soc., 36, 593, 10.1016/j.jeurceramsoc.2015.10.019 Zhang, 2009, High‐strain lead‐free antiferroelectric electrostrictors, Adv. Mater., 21, 16, 10.1002/adma.200901516 Chandrasekhar, 2015, Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications, Ceram. Int., 41, 5574, 10.1016/j.ceramint.2014.12.136 Dittmer, 2012, A high‐temperature‐capacitor dielectric based on K0.5Na0.5NbO3‐modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3, J. Am. Ceram. Soc., 95, 3519, 10.1111/j.1551-2916.2012.05321.x Dittmer, 2011, Lead-free high-temperature dielectrics with wide operational range, J. Appl. Phys., 109, 10.1063/1.3544481 Jones, 2002, A structural study of the (Na1−xK x)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature, Powder Diffr., 17, 301, 10.1154/1.1505047 Zhu, 2018, Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics, Ceram. Int., 44, 7851, 10.1016/j.ceramint.2018.01.220 Kreisel, 2000, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 solid solution, J. Phys. Condens. Matter, 12, 3267, 10.1088/0953-8984/12/14/305 Kreisel, 2001, High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite, Phys. Rev. B, 63, 10.1103/PhysRevB.63.174106 Petzelt, 2004, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3, J. Phys.: Condens. Matter, 16, 2719 Liu, 2017, Study of temperature-induced structural evolution in (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 lead-free ceramics, Curr. Appl. Phys., 17, 774, 10.1016/j.cap.2017.02.023 Liu, 2018, Local phenomena in bismuth sodium titanate perovskite studied by Raman spectroscopy, J. Am. Ceram. Soc., 101, 5604, 10.1111/jace.15875 Guyonnet, 2014, Ch-2, Domain walls in ferroelectric materials Qi, 2019, Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops, J. Euro. Ceramic Soc., 39, 3703, 10.1016/j.jeurceramsoc.2019.05.043 Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773 Cao, 2016, Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems, Appl. Phys. Lett., 108, 202902, 10.1063/1.4950974 Lin, 2007, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics, Appl. Phys. Lett., 90, 232903, 10.1063/1.2746087 Ren, 2004, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat. Mater., 3, 91, 10.1038/nmat1051 Glaum, 2013, Tailoring the piezoelectric and relaxor properties of (Bi1/2Na1/2)TiO3–BaTiO3 via zirconium doping, J. Am. Ceram. Soc., 96, 2881, 10.1111/jace.12405 Wongdamnern, 2009, Dynamic ferroelectric hysteresis scaling of BaTiO3 single crystals, J. Appl. Phys., 105, 10.1063/1.3086317 Fu, 2012, Polarization reversal and dynamic scaling of (Na0.5K0.5)NbO3 lead-free ferroelectric ceramics with double hysteresis-like loops, J. Appl. Phys., 112, 104114, 10.1063/1.4768270 Yimnirun, 2006, Scaling behavior of dynamic hysteresis in soft lead zirconate titanate bulk ceramics, Appl. Phys. Lett., 89, 162901, 10.1063/1.2363143 Zhang, 2019, Electric field and frequency dependent scaling behavior of dynamic hysteresis in relaxor-based ferroelectric 0.71Pb (Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal, J. Alloys Compd., 775, 435, 10.1016/j.jallcom.2018.10.123 Zhang, 2012, Scaling behavior of dynamic hysteresis in relaxor ferroelectric 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 ceramics, J. Appl. Phys., 111, 10.1063/1.4704383 Jo, 2011, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol%BaTiO3, J. Appl. Phys., 110, 074106, 10.1063/1.3645054 Zang, 2014, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3, J. Am. Ceram. Soc., 97, 1523, 10.1111/jace.12804 Maqbool, 2014, Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics, Ceram. Int., 40, 11905, 10.1016/j.ceramint.2014.04.026 Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3−BaTiO3 piezoelectrics, Phys. Rev. Lett., 109, 107602, 10.1103/PhysRevLett.109.107602 Acosta, 2012, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics, J. Eur. Ceram. Soc., 32, 4327, 10.1016/j.jeurceramsoc.2012.06.011 Bokov, 2006, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 41, 31, 10.1007/s10853-005-5915-7 Viehland, 1992, Deviation from Curie-Weiss behavior in relaxor ferroelectrics, Phys. Rev. B, 46, 8003, 10.1103/PhysRevB.46.8003 Cheng, 1996, Investigation of glassy behavior of lead magnesium niobate relaxors, J. Appl. Phys., 79, 8615, 10.1063/1.362685 Cheng, 1997, Dielectric behavior of lead magnesium niobate relaxors, Phys. Rev. B, 55, 8165, 10.1103/PhysRevB.55.8165 Pandey, 2015, Investigation of structural, dielectric and ferroelectric properties of Gd-doped lead magnesium niobate ceramics, Mater. Res. Express, 2, 096303, 10.1088/2053-1591/2/9/096303 Rout, 2006, Investigation of glassy behavior in lead barium ytterbium tantalate relaxors, J. Phys. Chem. Solids, 67, 1629, 10.1016/j.jpcs.2006.02.009 Limame, 2016, Investigation of the relaxor behavior of sol gel processed lanthanum lead titanium ceramics, Phys. B: Condens. Matter, 494, 26, 10.1016/j.physb.2016.04.026 Praharaj, 2016, Study of relaxor behavior in a lead-free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 ternary solid solution system, Ceram. Int., 42, 12663, 10.1016/j.ceramint.2016.05.014 Bokov, 2012, Dielectric relaxation in relaxor ferroelectrics, J. Adv. Dielectr., 2, 1241010, 10.1142/S2010135X1241010X Cheng, 1998, Dielectric properties and glassy behaviour in the solid-solution ceramics Pb(Zn∥Nb∥)O3-PbTiO3-BaTiO3, Philos. Mag. B, 78, 279, 10.1080/13642819808205731 Lines, 2001