Ferroelectric and dielectric study in 0.78Na0.5Bi0.5TiO3-0.2SrTiO3-0.02K0.5Na0.5NbO3 lead free ceramic
Tài liệu tham khảo
Rödel, 2009, Perspective on the development of lead‐free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x
Acosta, 2014, Temperature‐and frequency‐dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 lead‐free incipient piezoceramic, J. Am. Ceram. Soc., 97, 1937, 10.1111/jace.12884
Liu, 2018, Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases, J. Euro. Ceram. Soc., 38, 4939, 10.1016/j.jeurceramsoc.2018.07.029
Park, 1999, Lanthanum-substituted bismuth tit anate for use in non-volatile memories, Nature, 401, 682, 10.1038/44352
Kandula, 2018, Multifunctional Nd3+ substituted Na0.5Bi0.5TiO3 as lead-free ceramics with enhanced luminescence, ferroelectric and energy harvesting properties, RSC Adv., 8, 15282, 10.1039/C8RA01349G
Isupov, 2005, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions, Ferroelectrics, 315, 123, 10.1080/001501990910276
Zuo, 2008, Tantalum doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 piezoelectric ceramics, J. Eur. Ceram. Soc., 28, 871, 10.1016/j.jeurceramsoc.2007.08.011
Pham, 2010, Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics, Mater. Lett., 64, 2219, 10.1016/j.matlet.2010.07.048
Kang, 2015, (1−x)Bi0.5Na0.5TiO3–xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications, J. Eur. Ceram. Soc., 35, 2057, 10.1016/j.jeurceramsoc.2014.12.036
Yoshii, 2006, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics, Jpn. J. Appl., 45, 4493, 10.1143/JJAP.45.4493
Praharaj, 2020, Estimation of relaxor behavior in Sr2+ doped Na0.5Bi0.5TiO3 ceramics, J. Mater. Sci.: Mater. Electron., 31, 5554
Acosta, 2014, Temperature‐and frequency‐dependent properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 lead‐free incipient piezoceramic, J. Am. Ceram. Soc., 97, 1937, 10.1111/jace.12884
Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100−x)Na0.5Bi0.5TiO3–xSrTiO3 system, J. Appl. Phys., 108, 10.1063/1.3490781
Cao, 2016, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics, J. Eur. Ceram. Soc., 36, 593, 10.1016/j.jeurceramsoc.2015.10.019
Zhang, 2009, High‐strain lead‐free antiferroelectric electrostrictors, Adv. Mater., 21, 16, 10.1002/adma.200901516
Chandrasekhar, 2015, Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications, Ceram. Int., 41, 5574, 10.1016/j.ceramint.2014.12.136
Dittmer, 2012, A high‐temperature‐capacitor dielectric based on K0.5Na0.5NbO3‐modified Bi1/2Na1/2TiO3–Bi1/2K1/2TiO3, J. Am. Ceram. Soc., 95, 3519, 10.1111/j.1551-2916.2012.05321.x
Dittmer, 2011, Lead-free high-temperature dielectrics with wide operational range, J. Appl. Phys., 109, 10.1063/1.3544481
Jones, 2002, A structural study of the (Na1−xK x)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature, Powder Diffr., 17, 301, 10.1154/1.1505047
Zhu, 2018, Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3 lead-free piezoceramics, Ceram. Int., 44, 7851, 10.1016/j.ceramint.2018.01.220
Kreisel, 2000, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 solid solution, J. Phys. Condens. Matter, 12, 3267, 10.1088/0953-8984/12/14/305
Kreisel, 2001, High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite, Phys. Rev. B, 63, 10.1103/PhysRevB.63.174106
Petzelt, 2004, Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3, J. Phys.: Condens. Matter, 16, 2719
Liu, 2017, Study of temperature-induced structural evolution in (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3 lead-free ceramics, Curr. Appl. Phys., 17, 774, 10.1016/j.cap.2017.02.023
Liu, 2018, Local phenomena in bismuth sodium titanate perovskite studied by Raman spectroscopy, J. Am. Ceram. Soc., 101, 5604, 10.1111/jace.15875
Guyonnet, 2014, Ch-2, Domain walls in ferroelectric materials
Qi, 2019, Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops, J. Euro. Ceramic Soc., 39, 3703, 10.1016/j.jeurceramsoc.2019.05.043
Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773
Cao, 2016, Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems, Appl. Phys. Lett., 108, 202902, 10.1063/1.4950974
Lin, 2007, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics, Appl. Phys. Lett., 90, 232903, 10.1063/1.2746087
Ren, 2004, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat. Mater., 3, 91, 10.1038/nmat1051
Glaum, 2013, Tailoring the piezoelectric and relaxor properties of (Bi1/2Na1/2)TiO3–BaTiO3 via zirconium doping, J. Am. Ceram. Soc., 96, 2881, 10.1111/jace.12405
Wongdamnern, 2009, Dynamic ferroelectric hysteresis scaling of BaTiO3 single crystals, J. Appl. Phys., 105, 10.1063/1.3086317
Fu, 2012, Polarization reversal and dynamic scaling of (Na0.5K0.5)NbO3 lead-free ferroelectric ceramics with double hysteresis-like loops, J. Appl. Phys., 112, 104114, 10.1063/1.4768270
Yimnirun, 2006, Scaling behavior of dynamic hysteresis in soft lead zirconate titanate bulk ceramics, Appl. Phys. Lett., 89, 162901, 10.1063/1.2363143
Zhang, 2019, Electric field and frequency dependent scaling behavior of dynamic hysteresis in relaxor-based ferroelectric 0.71Pb (Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal, J. Alloys Compd., 775, 435, 10.1016/j.jallcom.2018.10.123
Zhang, 2012, Scaling behavior of dynamic hysteresis in relaxor ferroelectric 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 ceramics, J. Appl. Phys., 111, 10.1063/1.4704383
Jo, 2011, On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol%BaTiO3, J. Appl. Phys., 110, 074106, 10.1063/1.3645054
Zang, 2014, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3, J. Am. Ceram. Soc., 97, 1523, 10.1111/jace.12804
Maqbool, 2014, Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics, Ceram. Int., 40, 11905, 10.1016/j.ceramint.2014.04.026
Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3−BaTiO3 piezoelectrics, Phys. Rev. Lett., 109, 107602, 10.1103/PhysRevLett.109.107602
Acosta, 2012, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics, J. Eur. Ceram. Soc., 32, 4327, 10.1016/j.jeurceramsoc.2012.06.011
Bokov, 2006, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci., 41, 31, 10.1007/s10853-005-5915-7
Viehland, 1992, Deviation from Curie-Weiss behavior in relaxor ferroelectrics, Phys. Rev. B, 46, 8003, 10.1103/PhysRevB.46.8003
Cheng, 1996, Investigation of glassy behavior of lead magnesium niobate relaxors, J. Appl. Phys., 79, 8615, 10.1063/1.362685
Cheng, 1997, Dielectric behavior of lead magnesium niobate relaxors, Phys. Rev. B, 55, 8165, 10.1103/PhysRevB.55.8165
Pandey, 2015, Investigation of structural, dielectric and ferroelectric properties of Gd-doped lead magnesium niobate ceramics, Mater. Res. Express, 2, 096303, 10.1088/2053-1591/2/9/096303
Rout, 2006, Investigation of glassy behavior in lead barium ytterbium tantalate relaxors, J. Phys. Chem. Solids, 67, 1629, 10.1016/j.jpcs.2006.02.009
Limame, 2016, Investigation of the relaxor behavior of sol gel processed lanthanum lead titanium ceramics, Phys. B: Condens. Matter, 494, 26, 10.1016/j.physb.2016.04.026
Praharaj, 2016, Study of relaxor behavior in a lead-free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 ternary solid solution system, Ceram. Int., 42, 12663, 10.1016/j.ceramint.2016.05.014
Bokov, 2012, Dielectric relaxation in relaxor ferroelectrics, J. Adv. Dielectr., 2, 1241010, 10.1142/S2010135X1241010X
Cheng, 1998, Dielectric properties and glassy behaviour in the solid-solution ceramics Pb(Zn∥Nb∥)O3-PbTiO3-BaTiO3, Philos. Mag. B, 78, 279, 10.1080/13642819808205731
Lines, 2001