Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article

Springer Science and Business Media LLC - Tập 7 - Trang 1-140 - 2004
László B. Szabados1
1Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Budapest 114, Hungary

Tóm tắt

The present status of the quasi-local mass-energy-momentum and angular momentum constructions in general relativity is reviewed. First the general ideas, concepts, and strategies, as well as the necessary tools to construct and analyze the quasi-local quantities are recalled. Then the various specific constructions and their properties (both successes and defects) are discussed. Finally, some of the (actual and potential) applications of the quasi-local concepts and specific constructions are briefly mentioned. This review is based on the talks given at the Erwin Schrödinger Institute, Vienna, in July 1997, at the Universität Tübingen, in May 1998, and at the National Center for Theoretical Sciences in Hsinchu and at the National Central University, Chungli, Taiwan, in July 2000.

Tài liệu tham khảo

Abbott, L.F., and Deser, S., “Stability of gravity with a cosmological constant”, Nucl. Phys. B, 195, 76–96, (1982). 4.2.5 Aguirregabiria, J.M., Chamorro, A., and Virbhadra, K.S., “Energy and angular momentum of charged rotating black holes”, Gen. Relativ. Gravit., 28, 1393–1400, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9501002v3. 3 Aichelburg, P.C., “Remark on the superposition principle for gravitational waves”, Acta Phys. Austriaca, 34, 279–284, (1971). 4.2.5 Allemandi, G., Francaviglia, M., and Raiteri, M., “Energy in Einstein-Maxwell theory and the first law of isolated horizons via the Noether theorem”, Class. Quantum Grav., 19, 2633–2655, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0110104v1. 10.1.5, 13.3.2 Alvarez-Gaumé, L., and Nelson, P., “Riemann surfaces and string theories”, in de Wit, B., Fayet, P., and Grisaru, M., eds., Supersymmetry, Supergravity, Superstrings’ 86, Proceedings of the 4th Trieste Spring School, held at the ICTP, Trieste, Italy 7–15 April 1986, 419–510, (World Scientific, Singapore, 1986). 4.1.1 Anco, S.C., “Mean curvature flow in Hamiltonian general relativity, geometrical definitions of quasilocal mass-energy for spacelike two-surfaces, and their positivity”, (2004). URL (cited on 21 February 2005): http://arXiv.org/abs/math.DG/0402057v1. 11.3.3 Anco, S.C., and Tung, R.-S., “Covariant Hamiltonian boundary conditions in general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 5531–5566, (2002). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0109013v4. 1, 11.3.3 Anco, S.C., and Tung, R.-S., “Properties of the symplectic structure of general relativity for spatially bounded spacetime regions”, J. Math. Phys., 43, 3984–4019, (2002). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0109014v6. 1, 4.1.2, 11.3.3 Anderson, J.L., Principles of Relativity Physics, (Academic Press, New York, U.S.A.), 1967. 3 Andersson, F., and Edgar, S.B., “Curvature-free asymmetric metric connections in Kerr-Schild spacetimes”, J. Math. Phys., 39, 2859–2861, (1998). 8.3 Arnowitt, R., Deser, S., and Misner, C.W., “Energy and the criteria for radiation in general relativity”, Phys. Rev., 118, 1100–1104, (1960). 3.2.1 Arnowitt, R., Deser, S., and Misner, C.W., “Coordinate invariance and energy expressions in general relativity”, Phys. Rev., 122, 997–1006, (1961). 3.2.1 Arnowitt, R., Deser, S., and Misner, C.W., “Wave zone in general relativity”, Phys. Rev., 121, 1556–1566, (1961). 3.2.1 Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation, an Introduction to Current Research, 227–265, (Wiley, New York, U.S.A., 1962). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0405109v1. 3.2.1 Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 37–69, (Plenum Press, New York, U.S.A., 1980). 3.2, 3.2.1, 3.2.2 Ashtekar, A., “On the boundary conditions for gravitational and gauge fields at spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 95–109, (Springer, Berlin, Germany; New York, U.S.A., 1984). 3.2.1 Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, vol. 6 of Advanced Series in Astrophysics and Cosmology, (World Scientific, Singapore, 1991). 10.1.4, 21 Ashtekar, A., Beetle, C., and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys. Rev. D, 64, 044016-1–17, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0103026v2. 13.3.2 Ashtekar, A., Beetle, C., and Lewandowski, J., “Geometry of generic isolated horizons”, Class. Quantum Grav., 19, 1195–1225, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0111067v1. 13.3.2 Ashtekar, A., Bombelli, L., and Reula, O., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, (North-Holland, Amsterdam, Netherlands; New York, U.S.A., 1990). 11.3.1 Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and the first law”, Phys. Rev. D, 62, 104025-1–29, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0005083v3. 13.3.2 Ashtekar, A., and Geroch, R., “Quantum theory of gravitation”, Rep. Prog. Phys., 37, 1211–1256, (1974). 3.1.1, 4.2.5 Ashtekar, A., and Hansen, R.O., “A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542–1566, (1978). 3.2.1, 3.2.2, 7.2.4 Ashtekar, A., and Horowitz, G.T., “Energy-momentum of isolated systems cannot be null”, Phys. Lett., 89A, 181–184, (1982). 8.2.3, 14.1 Ashtekar, A., and Krishnan, B., “Dynamical horizons: Energy, angular momentum, fluxes and balance laws”, Phys. Rev. Lett., 89, 261101-1–261101-4, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0207080v3. 13.3.2 Ashtekar, A., and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68, 104030-1–25, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0308033v4. 13.3.2 Ashtekar, A., and Magnon, A., “Asymptotically anti-de Sitter spacetimes”, Class. Quantum Grav., 1, L39–L44, (1984). 4.2.5, 7.2.4 Ashtekar, A., and Romano, J.D., “Spatial infinity as a boundary of spacetime”, Class. Quantum Grav., 9, 1069–1100, (1992). 3.2.1 Ashtekar, A., and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607, (1981). 7.2.4 Ashtekar, A., and Winicour, J., “Linkages and Hamiltonians at null infinity”, J. Math. Phys., 23, 2410–2417, (1982). 3.2.4 Balachandran, A.P., Chandar, L., and Momen, A., “Edge States in Canonical Gravity”, (1995). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9506006v2. 11.1, 21, 21, 21 Balachandran, A.P., Momen, A., and Chandar, L., “Edge states in gravity and black hole physics”, Nucl. Phys. B, 461, 581–596, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9412019v2. 11.1, 21, 21, 21 Balasubramanian, V., and Kraus, P., “A stress tensor for anti-de-Sitter gravity”, Commun. Math. Phys., 208, 413–428, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9902121v5. 10.3.3 Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). 13.3.1 Barrabès, C., Gramain, A., Lesigne, E., and Letelier, P.S., “Geometric inequalities and the hoop conjecture”, Class. Quantum Grav., 9, L105–L110, (1992). 13.2.2 Barrabès, C., Israel, W., and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic censorship and the hoop conjecture”, Phys. Lett. A, 160, 41–44, (1991). 13.2.2 Bartnik, R., “The mass of an asymptotically flat manifold”, Commun. Pure Appl. Math., 39, 661–693, (1986). 3.2.1 Bartnik, R., “A new definition of quasi-local mass”, in Blair, D.G., and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8–13 August 1988, 399–401, (World Scientific, Singapore; River Edge, U.S.A., 1989). 5.1.1, 9, 9 Bartnik, R., “New definition of quasilocal mass”, Phys. Rev. Lett., 62, 2346–2348, (1989). 5.1.1, 9, 9, 5.1.2, 5.1.3 Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31–71, (1993). 5.1.3 Bartnik, R., “Mass and 3-metrics of non-negative scalar curvature”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20–28 August 2002, vol. II, 231–240, (World Scientific, Singapore, 2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/math.DG/0304259v1. 9, 5.1.2, 5.1.3, 5.2 Baskaran, D., Lau, S.R., and Petrov, A.N., “Center of mass integral in canonical general relativity”, Ann. Phys. (N.Y.), 307, 90–131, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0301069v2. 3.2.2, 10.1.7 Baston, R.J., “The index of the 2-twistor equations”, Twistor Newsletter, 1984(17), 31–32, (1984). 4.1.6, 4.1.7, 7.2.1 Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295–304, (1984). 7 Beig, R., “Time symmetric initial data and Penrose’s quasi-local mass”, Class. Quantum Grav., 8, L205–L209, (1991). 7.2.5 Beig, R., “The classical theory of canonical general relativity”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13–17 September 1993, vol. 434 of Lecture Notes in Physics, 59–80, (Springer, Berlin, Germany; New York, U.S.A., 1994). 4.3.1 Beig, R., and ÓMurchadha, N., “The Poincaré group as the symmetry group of canonical general relativity”, Ann. Phys. (N.Y.), 174, 463–498, (1987). 3.2.1, 3.2.2, 10.1.7, 21 Beig, R., and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys., 87, 65–80, (1982). 3.2.1, 7, 7.2.4 Beig, R., and Szabados, L.B., “On a global conformal invariant of initial data sets”, Class. Quantum Grav., 14, 3091–3107, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9706078v1. 7.2.5 Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333–2346, (1973). 13.3.1 Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292–3300, (1974). 13.3.1 Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded systems”, Phys. Rev. D, 23, 287–298, (1981). 13.4.1 Bekenstein, J.D., “Black holes and everyday physics”, Gen. Relativ. Gravit., 14, 355–359, (1982). 13.4.1 Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, (2000). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0006003v3. 13.4.1 Bekenstein, J.D., and Mayo, A.E., “Black hole polarization and new entropy bounds”, Phys. Rev. D, 61, 024022-1–8, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9903002v2. 13.4.1 Belinfante, F.J., “On the spin angular momentum of mesons”, Physica, VI(9), 887–898, (1939). 2.1.2, 2 Belinfante, F.J., “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields”, Physica, VII, 449–474, (1940). 2.1.2, 2 Ben-Dov, I., “Penrose nequality and apparent horizons”, Phys. Rev. D, 70, 124031-1–11, (2004). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0408066v1. 13.2.1 Bergmann, P.G., “The general theory of relativity”, in Flügge, S., ed., Handbuch der Physik. Vol. IV: Prinzipien der Elektrodynamik und Relativitätstheorie, 203–242, (Springer, Berlin, Germany; New York, U.S.A., 1962). 3, 3.1.5 Bergmann, P.G., and Thomson, R., “Spin and angular momentum in general relativity”, Phys. Rev., 89, 400–407, (1953). 3.2.4 Bergqvist, G., “Positivity and definitions of mass”, Class. Quantum Grav., 9, 1917–1922, (1992). 8.1.3, 8.2.3 Bergqvist, G., “Quasilocal mass for event horizons”, Class. Quantum Grav., 9, 1753–1766, (1992). 4.2.5 Bergqvist, G., “Energy of small surfaces”, Class. Quantum Grav., 11, 3013–3023, (1994). 6.3 Bergqvist, G., “On the Penrose inequality and the role of auxiliary spinor fields”, Class. Quantum Grav., 14, 2577–2583, (1997). 13.2.1 Bergqvist, G., “Vacuum momenta of small spheres”, Class. Quantum Grav., 15, 1535–1538, (1998). 6.3 Bergqvist, G., and Ludvigsen, M., “Quasi-local mass near a point”, Class. Quantum Grav., 4, L29–L32, (1987). 8.1.2, 8.1.3 Bergqvist, G., and Ludvigsen, M., “Spinor propagation and quasilocal momentum for the Kerr solution”, Class. Quantum Grav., 6, L133–L136, (1989). 8.3 Bergqvist, G., and Ludvigsen, M., “Quasilocal momentum and angular momentum in Kerr spacetime”, Class. Quantum Grav., 8, 697–701, (1991). 8.3, 9.3 Bernstein, D.H., and Tod, K.P., “Penrose’s quasi-local mass in a numerically computed space-time”, Phys. Rev. D, 49, 2808–2820, (1994). 7.2.5 Bizoń, P., and Malec, E., “On Witten’s positive-energy proof for weakly asymptotically flat spacetimes”, Class. Quantum Grav., 3, L123–L128, (1986). 3.2.1 Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535, (1960). 3.2.3 Bondi, H., van den Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). 3.2.3 Booth, I., and Fairhurst, S., “Canonical phase space formulation of quasilocal general relativity”, Class. Quantum Grav., 20, 4507–4531, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0301123v2. 10.1.5 Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92, 011102-1–4, (2004). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0307087v2. 13.3.1 Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class. Quantum Grav., 18, 4239–4264, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0105009v2. 13.3.2 Booth, I.S., and Creighton, J.D.E., “A quasilocal calculation of tidal heating”, Phys. Rev. D, 62, 067503-1–4, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0003038v2. 10.1.7, 13.1 Booth, I.S., and Mann, R.B., “Moving observers, nonorthogonal boundaries, and quasilocal energy”, Phys. Rev. D, 59, 0640221-1–9, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9810009v2. 14, 10.1.4, 10.1.5, 10.1.7, 10.1.8 Booth, I.S., and Mann, R.B., “Static and infalling quasilocal energy of charged and naked black holes”, Phys. Rev. D, 60, 124009-1–22, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9907072v1. 10.1.4 Borowiec, A., Ferraris, M., Francaviglia, M., and Volovich, I., “Energy-momentum complex for nonlinear gravitational Lagrangians in the first-order formalism”, Gen. Relativ. Gravit., 26, 637–645, (1994). 3 Bousso, R., “Holography in general space-times”, J. High Energy Phys., 06, 028, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9906022v2. 13.4.2 Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825–874, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0203101v2. 13.4.1, 13.4.2 Brady, P.R., Droz, S., Israel, W., and Morsink, S.M., “Covariant double-null dynamics: (2+2)-splitting of the Einstein equations”, Class. Quantum Grav., 13, 2211–2230, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9510040v1. 11.2.1 Bramson, B.D., “The alignment of frames of reference at null infinity for asymptotically flat Einstein-Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 451–461, (1975). 3.2.3, 3.2.4, 4.1.7, 8 Bramson, B.D., “Relativistic angular momentum for asymptotically flat Einstein-Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 463–490, (1975). 3.2.4, 8 Bramson, B.D., “Physics in cone space”, in Espositio, P., and Witten, L., eds., Asymptotic structure of spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14–18, 1976, 273–359, (Plenum Press, New York, U.S.A., 1977). 3.2.4 Bramson, B.D., “The invariance of spin”, Proc. R. Soc. London, Ser. A, 364, 463–490, (1978). 3.2.4, 8 Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”, J. Differ. Geom., 59, 177–267, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/math.DG/9911173v1. 9, 5.2, 13.2.1 Bray, H.L., “Black holes and the Penrose inequality in general relativity”, in Tatsien, L., ed., Proceedings of the International Congress of Mathematicians, Beijing, China 20–28 August 2002, vol. II, (World Scientific, Singapore, 2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/math.DG/0304261v1. 13.2.1 Bray, H.L., “Black holes, geometric flows, and the Penrose inequality in general relativity”, Notices AMS, 49, 1372–1381, (2002). 13.2.1 Bray, H.L., and Chruściel, P.T., “The Penrose Inequality”, (2003). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0312047v1. 5.2, 13.2.1 Brinkmann, H.W., “On Riemann spaces conformal to Euclidean space”, Proc. Natl. Acad. Sci. USA, 9, 1–3, (1923). 17 Brown, J.D., Creighton, J.D.E., and Mann, R., “Temperature, energy, and heat capacity of asymptotically anti-de-Sitter black holes”, Phys. Rev. D, 50, 6394–6403, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9405007v1. 10.1.7, 13.3.1 Brown, J.D., Lau, S.R., and York Jr, J.W., “Energy of isolated systems at retarded times as the null limit of quasilocal energy”, Phys. Rev. D, 55, 1977–1984, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9609057v1. 10.1.7, 10.3.3 Brown, J.D., Lau, S.R., and York Jr, J.W., “Canonical quasilocal energy and small spheres”, Phys. Rev. D, 59, 064028-1–13, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9810003. 6, 17, 10.1.7 Brown, J.D., Lau, S.R., and York Jr, J.W., “Action and energy of the gravitational field”, Ann. Phys. (N.Y.), 297, 175–218, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0010024v3. 14, 10.1.4, 10.1.5, 10.1.7 Brown, J.D., and York, J.M., “Quasilocal energy in general relativity”, in Gotay, M.J., Marsden, J.E., and Moncrief, V.E., eds., Mathematical Aspects of Classical Field Theory, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 20–26, 1991 at the University of Washington, Seattle, vol. 132 of Contemporary Mathematics, 129–142, (American Mathematical Society, Providence, U.S.A., 1992). 10, 10.1.1, 10.1.2, 10.1.6, 17, 10.1.7, 10.1.8 Brown, J.D., and York Jr, J.W., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D, 47, 1407–1419, (1993). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9209012. 10, 10.1.1, 10.1.2, 10.1.5, 17, 10.1.7 Cahill, M.E., and McVittie, G.C., “Spherical symmetry and mass-energy in general relativity I. General theory”, J. Math. Phys., 11, 1382–1391, (1970). 4.2.1 Carlip, S., “Statistical Mechanics and Black Hole Entropy”, (1995). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9509024v2. 11.1, 21, 21, 21 Carlip, S., “Black hole entropy from conformal field theory in any dimension”, Phys. Rev. Lett., 82, 2828–2831, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9812013v3. 21, 13.3.1 Carlip, S., “Entropy from conformal field theory at Killing horizons”, Class. Quantum Grav., 16, 3327–3348, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9906126v2. 21, 13.3.1 Carlip, S., “Black hole entropy from conformal field theory”, Nucl. Phys. B (Proc. Suppl.), 88, 10–16, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9912118v1. 21, 13.3.1 Carlip, S., “Near-horizon conformal symmetry and black hole entropy”, Phys. Rev. Lett., 88, 241301-1–241301-4, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0203001v1. 21, 13.3.1 Chang, C.-C., Nester, J.M., and Chen, C.-M., “Pseudotensors and quasi-local energy-momentum”, Phys. Rev. Lett., 83, 1897–1901, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9809040v2. 3.1.2, 3.3.1, 11.3.4 Chang, C.-C., Nester, J.M., and Chen, C.-M., “Energy-momentum quasi-localization for gravitating systems”, in Liu, L., Luo, J., Li, X.-Z., and Hsu, J.-P., eds., Gravitation and Astrophysics, Proceedings of the Fourth International Workshop, held at Beijing Normal University, China, October 10–15, 1999, 163–173, (World Scientific, Singapore; River Edge, U.S.A., 2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9912058v1. 11.3.2, 11.3.2 Chellathurai, V., and Dadhich, N., “Effective mass of a rotating black hole in a magnetic field”, Class. Quantum Grav., 7, 361–370, (1990). 12.2 Chen, C.-M., and Nester, J.M., “Quasilocal quantities for general relativity and other gravity theories”, Class. Quantum Grav., 16, 1279–1304, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9809020v2. 11.3.2, 11.3.2, 11.3.2 Chen, C.-M., and Nester, J.M., “A symplectic Hamiltonian derivation of quasi-local energy-momentum for GR”, Grav. Cosmol., 6, 257–270, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0001088v1. 3.1.3, 11.3.2, 11.3.4 Chen, C.-M., Nester, J.M., and Tung, R.-S., “Quasilocal energy-momentum for geometric gravity theories”, Phys. Lett. A, 203, 5–11, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9411048v2. 11.3.2, 11.3.2 Chen, C.-M., Nester, J.M., and Tung, R.-S., “Spinor Formulations for Gravitational Energy-Momentum”, (2002). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0209100v2. 11.3.2 11.3.2 Christodoulou, D., and Yau, S.-T., “Some remarks on the quasi-local mass”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22–28, 1986, vol. 71 of Contemporary Mathematics, 9–14, (American Mathematical Society, Providence, U.S.A., 1988). 4.3, 4.3.2, 4.3.2, 10 Chruściel, P.T., “Boundary conditions at spacelike infinity from a Hamiltonian point of view”, in Bergmann, P.G., and de Sabbata, V., eds., Topological Properties and Global Structure of Space-time, Proceedings of a NATO Advanced Study Institute, held May 12–22, 1985, in Erice, Italy, vol. 138 of NATO ASI Series B, 49–59, (Plenum Press, New York, U.S.A., 1986). 3.2.1 Chruściel, P.T., “A remark on the positive-energy theorem”, Class. Quantum Grav., 3, L115–L121, (1986). 3.2.1 Chrunściel, P.T., Jezierski, J., and Kijowski, J., Hamiltonian Field Theory in the Radiating Regime, vol. m70 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 2002). 3.2.3, 3.2.3, 3.2.4 Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H., “Uniqueness of scalar field energy and gravitational energy in the radiating regime”, Phys. Rev. Lett., 80, 5052–5055, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9801073v1. 3.2.3 Chrunściel, P.T., Jezierski, J., and MacCallum, M.A.H., “Uniqueness of the Trautman-Bondi mass”, Phys. Rev. D, 58, 084001-1–16, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9803010v1. 3.2.3 Chrunściel, P.T., and Nagy, G., “A Hamiltonian mass of asymptotically anti-de Sitter spacetimes”, Class. Quantum Grav., 18, L61–L68, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0011270v2. 4.2.5 Coleman, S., “Non-Abelian plane waves”, Phys. Lett., 70B, 59–60, (1977). 2.2.5 Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint equations”, Commun. Math. Phys., 214, 137–189, (2000). 5.1.3 Corvino, J., and Schoen, R.M., “On the Asymptotics for the Vacuum Einstein Constraint Equations”, (2003). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0301071v1. 5.1.3 Creighton, J.D.E., and Mann, R., “Quasilocal thermodynamics of dilaton gravity coupled to gauge fields”, Phys. Rev. D, 52, 4569–4587, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9505007v1. 13.3.1 Crnkovic, C., and Witten, E., “Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 676–684, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). 11.3.1 d’Inverno, R.A., and Smallwood, J., “Covariant 2+2 formalism of the initial-value problem in general relativity”, Phys. Rev. D, 22, 1233–1247, (1980). 11.2.1 Dain, S., personal communication, (September, 2003). 13.2.1 Dain, S., and Moreschi, O.M., “General existence proof for rest frame systems in asymptotically flat spacetime”, Class. Quantum Grav., 17, 3663–3672, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0203048v1. 3.2.4 Dougan, A.J., “Quasi-local mass for spheres”, Class. Quantum Grav., 9, 2461–2475, (1992). 8.2.4 Dougan, A.J., and Mason, L.J., “Quasilocal mass constructions with positive energy”, Phys. Rev. Lett., 67, 2119–2122, (1991). 8.2.1, 8.2.3, 8.2.4 Dray, T., “Momentum flux at null infinity”, Class. Quantum Grav., 2, L7–L10, (1985). 7.2.4 Dray, T., and Streubel, M., “Angular momentum at null infinity”, Class. Quantum Grav., 1, 15–26, (1984). 7.2.4 Dubois-Violette, M., and Madore, J., “Conservation laws and integrability conditions for gravitational and Yang-Mills equations”, Commun. Math. Phys., 108, 213–223, (1987). 3.2.1, 3.3.1 Eardley, D.M., “Global problems in numerical relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24–August 4, 1978, 127–138, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979). 4.3, 4.3.2, 4.3.2, 4.3.3, 10 Eastwood, M., and Tod, K.P., “Edth — a differential operator on the sphere”, Math. Proc. Camb. Phil. Soc., 92, 317–330, (1982). 4.1.6 Epp, R.J., “Angular momentum and an invariant quasilocal energy in general relativity”, Phys. Rev. D, 62, 124018-1–30, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0003035v1. 10, 17, 10.3.1, 10.3.2, 10.3.3 Exton, A.R., Newman, E.T., and Penrose, R., “Conserved quantities in the Einstein-Maxwell theory”, J. Math. Phys., 10, 1566–1570, (1969). 8 Fatibene, L., Ferraris, M., Francaviglia, M., and Raiteri, M., “Noether charges, Brown-York quasilocal energy, and related topics”, J. Math. Phys., 42, 1173–1195, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0003019v1. 3.1.3, 10.1.4 Favata, M., “Energy localization invariance of tidal work in general relativity”, Phys. Rev. D, 63, 064013-1–14, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0008061v1. 13.1 Ferraris, M., and Francaviglia, M., “Covariant first-order Lagrangians, energy-density and superpotentials in general relativity”, Gen. Relativ. Gravit., 22, 965–985, (1990). 3 Ferraris, M., and Francaviglia, M., “Conservation laws in general relativity”, Class. Quantum Grav., 9, S79–S95, (1992). 3 Flanagan, É.É., “Hoop conjecture for black-hole horizon formation”, Phys. Rev. D, 44, 2409–2420, (1991). 13.2.2 Flanagan, É.É., Marolf, D., and Wald, R.M., “Proof of classical versions of the Bousso entropy bound and of the generalized second law”, Phys. Rev. D, 62, 084035-1–11, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9908070v4. 13.4.2 Francaviglia, M., and Raiteri, M., “Hamiltonian, energy and entropy in general relativity with non-orthogonal boundaries”, Class. Quantum Grav., 19, 237–258, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0107074v1. 2.1.2, 10.1.5, 13.3.2 Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class. Quantum Grav., 6, L237–L241, (1989). 3.3.1, 11.3.4 Frauendiener, J., “On an integral formula on hypersurfaces in general relativity”, Class. Quantum Grav., 14, 2413–3423, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9511036v1. 13.2.1 Frauendiener, J., “Conformal infinity”, Living Rev. Relativity, 3, lrr-2000-4, (2000). URL (cited on 29 January 2004): http://www.livingreviews.org/lrr-2000-4. 3.2 Frauendiener, J., “On the Penrose inequality”, Phys. Rev. Lett., 87, 101101-1–101101-4, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0105093v1. 10 Frauendiener, J., and Sparling, G.A.J., “On the symplectic formalism for general relativity”, Proc. R. Soc. London, 436, 141–153, (1992). 11.3.1 Frauendiener, J., and Szabados, L.B., “The kernel of the edth operators on higher-genus spacelike 2-surfaces”, Class. Quantum Grav., 18, 1003–1014, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0010089. 4.1, 4.1.6 Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83–163, (1998). 3.2.1 Garfinkle, D., and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum Grav., 17, 3317–3324, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0004056v2. 13.3.1 Geroch, R., “Energy extraction”, Ann. N.Y. Acad. Sci., 224, 108–117, (1973). 6.2.1, 6.2.2, 6.2.2 Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P., and Witten, L., eds., Asymptotic Structure ofSpacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14–18, 1976, 1–105, (Plenum Press, New York, U.S.A., 1977). 3.2, 3.2.1, 4.2.4 Geroch, R., Held, A., and Penrose, R., “A spacetime calculus based on pairs of null directions”, J. Math. Phys., 14, 874–881, (1973). 4.1, 4.1.6, 11.2.1 Geroch, R., and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803–812, (1981). 3.2.3 Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 1. Superpotentials”, (1995). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9510061v1. Preprint MPH-CAM-103-95. 3 Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 2. Gravitational Superpotential”, (1995). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9511040v1. Preprint MPH-CAM-108-95. 3 Gibbons, G.W., “The isoperimetric and Bogomolny inequalities for black holes”, in Willmore, T.J., and Hitchin, N.J., eds., Global Riemannian Geometry, 194–202, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984). 4, 9, 13.2.1 Gibbons, G.W., “Collapsing shells and the isoperimetric inequality for black holes”, Class. Quantum Grav., 14, 2905–2915, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9701049v1. 13.2.1 Gibbons, G.W., and Hawking, S.W., “Action integrals and partition functions in general relativity”, Phys. Rev. D, 15, 2752–2756, (1977). 10.1.6, 10.1.8 Gibbons, G.W., Hawking, S.W., Horowitz, G.T., and Perry, M.J., “Positive mass theorem for black holes”, Commun. Math. Phys., 88, 295–308, (1983). 3.2.1, 9, 13.2.1 Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solutions in N=2 supergravity”, Phys. Lett. B, 109, 190–194, (1982). 13.2.1 Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl. Phys. B, 218, 173–190, (1983). 4.2.5 Goldberg, J.N., “Conservation laws in general relativity”, Phys. Rev., 111, 315–320, (1958). 3 Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, 469–489, (Plenum Press, New York, U.S.A., 1980). 3, 3.2, 3.2.1, 3.2.1, 3.2.1, 3.2.3 Goldberg, J.N., “Conserved quantities at spatial and null infinity: The Penrose potential”, Phys. Rev. D, 41, 410–417, (1990). 11 Goldberg, J.N., and Soteriou, C., “Canonical general relativity on a null surface with coordinate and gauge fixing”, Class. Quantum Grav., 12, 2779–2797, (1995). 11.2.1 Gour, G., “Entropy bounds for charged and rotating systems”, Class. Quantum Grav., 20, 3403–3412, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0302117v1. 13.4.1 Güven, R., “Solutions for gravity coupled to non-Abelian plane waves”, Phys. Rev. D, 19, 471–472, (1979). 8.2.3 Haag, R., Local Quantum Physics, Fields, Particles, Algebras, Texts and Monographs in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1992). 2.2, 2.2.1, 3.3.2, 9.2 Haag, R., and Kastler, D., “An algebraic approach to quantum field theory”, J. Math. Phys., 5, 848–861, (1964). 2.2, 2.2.1, 3.3.2 Harnett, G., “The flat generalized affine connection and twistors for the Kerr solution”, Class. Quantum Grav., 10, 407–415, (1993). 8.3, 9.3 Hawking, S.W., “Gravitational radiation in an expanding universe”, J. Math. Phys., 9, 598–604, (1968). 6.1.1, 10 Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972). 13.3.1 Hawking, S.W., “The Event Horizon”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, 1–56, (Gordon and Breach, New York, U.S.A., 1973). 13.3.1 Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). 13.3.1 Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973). 2.1.1, 2.2.1, 2.2.3, 4.2.1, 8.1.2, 13.3.1 Hawking, S.W., and Horowitz, G., “The gravitational Hamiltonian, action, entropy and surface terms”, Class. Quantum Grav., 13, 1487–1498, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9501014v1. 10.1.5, 10.1.7, 10.1.8 Hawking, S.W., and Hunter, C.J., “The gravitational Hamiltonian in the presence of nonorthogonal boundaries”, Class. Quantum Grav., 13, 2735–2752, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9603050v2. 14, 10.1.5, 10.1.8 Hayward, G., “Gravitational action for spacetimes with nonsmooth boundaries”, Phys. Rev. D, 47, 3275–3280, (1993). 14 Hayward, G., “Quasilocal energy conditions”, Phys. Rev. D, 52, 2001–2006, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9403039v1. 10.1.4 Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790, (1993). 11.2.1 Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467–6474, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9303006v3. 4.1.8, 13.3.1 Hayward, S.A., “Quasi-localization of Bondi-Sachs energy loss”, Class. Quantum Grav., 11, 3037–3048, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9405071v1. 4.1.3, 10, 11.2.2 Hayward, S.A., “Quasilocal gravitational energy”, Phys. Rev. D, 49, 831–839, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9303030v1. 6.3, 11.2.1, 13.3.1 Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum Grav., 11, 3025–3035, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9406033v1. 13.3.1 Hayward, S.A., “Gravitational energy in spherical symmetry”, Phys. Rev. D, 53, 1938–1949, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9408002. 4, 13.2.1, 13.3.1 Hayward, S.A., “Inequalities relating area, energy, surface gravity and charge of black holes”, Phys. Rev. Lett., 81, 4557–4559, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9807003v1. 13.2.1, 13.3.1 Hayward, S.A., “Unified first law of black hole dynamics and relativistic thermodynamics”, Class. Quantum Grav., 15, 3147–3162, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9710089v2. 13.3.1 Hayward, S.A., “Gravitational energy as Noether charge”, (2000). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0004042v1. 13.3.1 Hayward, S.A., “Gravitational-wave dynamics and black-hole dynamics: second quasi-spherical approximation”, Class. Quantum Grav., 18, 5561–5581, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0102013v1. 11.2.1, 13.3.1 Hayward, S.A., Mukohyama, S., and Ashworth, M.C., “Dynamic black-hole entropy”, Phys. Lett. A, 256, 347–350, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9810006v1. 13.3.1 Hecht, R.D., and Nester, J.M., “A new evaluation of PGT mass and spin”, Phys. Lett. A, 180, 324–331, (1993). 11.3.2 Hecht, R.D., and Nester, J.M., “An evaluation of mass and spin at null infinity for the PGT and GR gravity theories”, Phys. Lett. A, 217, 81–89, (1996). 11.3.2 Hehl, F.W., “On the energy tensor of spinning massive matter in classical field theory and general relativity”, Rep. Math. Phys., 9, 55–82, (1976). 2.1.2, 2 Hehl, F.W., von der Heyde, P., Kerlick, G.D., and Nester, J.M., “General relativity with spin and torsion: Foundation and prospects”, Rev. Mod. Phys., 48, 393–416, (1976). 2.1.2, 2 Heinz, E., “On Weyl’s embedding problems”, J. Math. Mech., 11, 421–454, (1962). 17 Helfer, A.D., “The angular momentum of gravitational radiation”, Phys. Lett. A, 150, 342–344, (1990). 7.2.4 Helfer, A.D., “Difficulties with quasi-local momentum and angular momentum”, Class. Quantum Grav., 9, 1001–1008, (1992). 7.2.3 Henneaux, M., Martinez, C., Troncose, R., and Zanelli, J., “Anti-de Sitter space, asymptotics, scalar fields”, Phys. Rev. D, 70, 044034-1–4, (2004). Related online version (cited on 21 February 2005): http://arXiv.org/abs/hep-th/0404236v2. 4.2.5 Hernandez, W.C., and Misner, C.W., “Observer time as a coordinate in relativistic spherical hydrodynamics”, Astrophys. J., 143, 452–464, (1966). 4.2.1, 4.2.1 Herzlich, M., “The positive mass theorem for black holes revisited”, J. Geom. Phys., 26, 97–111, (1998). 3.2.1 Hod, S., “Universal entropy bound for rotating systems”, Phys. Rev. D, 61, 024018-1–4, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9901035v2. 13.4.1 Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 1–21, (Springer, Berlin, Germany; New York, U.S.A., 1984). 3.2, 3.2.1, 13.2.1 Horowitz, G.T., and Perry, M.J., “Gravitational energy cannot become negative”, Phys. Rev. Lett., 48, 371–374, (1982). 3.2.3 Horowitz, G.T., and Schmidt, B.G., “Note on gravitational energy”, Proc. R. Soc. London, Ser. A, 381, 215–224, (1982). 4.2.2, 6, 6.1.2, 6.2.1 Horowitz, G.T., and Tod, K.P., “A relation between local and total energy in general relativity”, Commun. Math. Phys., 85, 429–447, (1982). 3.2.1, 3.2.1, 3.2.3 Hugget, S.A., and Tod, K.P., An Introduction to Twistor Theory, vol. 4 of London Mathematical Society Student Texts, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1985). 4.1, 4.2.5, 7 Huisken, G., and Ilmanen, T., “The Riemannian Penrose inequality”, Int. Math. Res. Notices, 20, 1045–1058, (1997). Related online version (cited on 29 January 2004): http://www.math.ethz.ch/∼ilmanen/papers/hpanno.ps. 6.2.2, 13.2.1 Huisken, G., and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353–437, (2001). Max-Planck-Institut für Mathematik in den Naturwissenschaften Preprint No 16, Leipzig 1998. 9, 5.1.2, 6.2.2, 13.2.1 Huisken, G., and Yau, S.-T., “Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature”, Invent. Math., 124, 281–311, (1996). 3.2.2 Husain, V., and Major, S., “Gravity and BF theory defined in bounded regions”, Nucl. Phys. B, 500, 381–401, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9703043v2. 21 Ikumi, K., and Shiromizu, T., “Freely falling 2-surfaces and the quasi-local energy”, Gen. Relativ. Gravit., 31, 73–90, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9704020v3. 11.2.1 Isenberg, J., and Nester, J.M., “Canonical gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 1, 23–97, (Plenum Press, New York, U.S.A., 1980). 2.2.2 Isham, C.J., “Prima facie questions in quantum gravity”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13–17 September 1993, vol. 434 of Lecture Notes in Physics, 1–21, (Springer, Berlin, Germany; New York, U.S.A., 1994). 3.3.1 Israel, W., and Nester, J.M., “Positivity of the Bondi gravitational mass”, Phys. Lett. A, 85, 259–260, (1981). 3.2.3 Iyer, V., and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9403028v1. 2.1.2, 3.1.2, 3.1.3, 11.3.1, 13.3.1 Iyer, V., and Wald, R.M., “A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes”, Phys. Rev. D, 52, 4430–4439, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9503052v1. 11.3.1, 13.3.1 Jang, P.S., “On the positivity of energy in general relativity”, J. Math. Phys., 19, 1152–1155, (1978). Erratum: J. Math. Phys. 20 217 (1979). 6.2.2, 10.4.2 Jang, P.S., “Note on cosmic censorship”, Phys. Rev. D, 20, 834–837, (1979). 13.2.1 Jang, P.S., and Wald, R.M., “The positive energy conjecture and the cosmic censor hypothesis”, J. Math. Phys., 17, 41–44, (1977). 6.2.2, 6.2.2 Jeffryes, B.P., “Two-surface twistors and conformal embedding”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 177–184, (Springer, Berlin, Germany; New York, U.S.A., 1984). 7.2.3 Jeffryes, B.P., “‘Extra’ solutions to the 2-surface twistor equations”, Class. Quantum Grav., 3, L9–L12, (1986). 7.2.1 Jeffryes, B.P., “The Newtonian limit of Penrose’s quasi-local mass”, Class. Quantum Grav., 3, 841–852, (1986). 7.2.4 Jeffryes, B.P., “2-Surface twistors, embeddings and symmetries”, Proc. R. Soc. London, Ser. A, 411, 59–83, (1987). 7.2.3, 7.2.5 Jezierski, J., “Positivity of mass for spacetimes with horizons”, Class. Quantum Grav., 6, 1535–1539, (1989). 3.2.1 Jezierski, J., “Perturbation of initial data for spherically symmetric charged black hole and Penrose conjecture”, Acta Phys. Pol. B, 25, 1413–1417, (1994). 13.2.1 Jezierski, J., “Stability of Reissner-Nordströom solution with respect to small perturbations of initial data”, Class. Quantum Grav., 11, 1055–1068, (1994). 13.2.1 Jezierski, J., and Kijowski, J., “The localization of energy in gauge field theories and in linear gravitation”, Gen. Relativ. Gravit., 22, 1283–1307, (1990). 4.2.5 Julia, B., and Silva, S., “Currents and superpotentials in classical gauge invariant theories I. Local results with applications to perfect fluids and general relativity”, Class. Quantum Grav., 15, 2173–2215, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9804029v2. 2.1.2, 3 Katz, J., “A note on Komar’s anomalous factor”, Class. Quantum Grav., 2, 423–425, (1985). 3.1.3, 3.2.2, 11.3.2 Katz, J., Bicak, J., and Lynden-Bell, D., “Relativistic conservation laws and integral constraints for large cosmological perturbations”, Phys. Rev. D, 55, 5957–5969, (1997). 3.1.3, 10.1.4, 11.3.2 Katz, J., and Lerer, D., “On global conservation laws at null infinity”, Class. Quantum Grav., 14, 2249–66, (1997). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9612025. 3.1.2, 3.1.3 Katz, J., Lynden-Bell, D., and Israel, W., “Quasilocal energy in static gravitational fields”, Class. Quantum Grav., 5, 971–987, (1988). 12.3, 12.3 Katz, J., and Ori, A., “Localisation of field energy”, Class. Quantum Grav., 7, 787–802, (1990). 3.1.3, 11.3.2 Kelly, R.M., “Asymptotically anti de Sitter space-times”, Twistor Newsletter, 1985(20), 11–23, (1985). 7.2.4 Kelly, R.M., Tod, K.P., and Woodhouse, N.M.J., “Quasi-local mass for small surfaces”, Class. Quantum Grav., 3, 1151–1167, (1986). 4.2.2, 6, 6, 7.2.6, 7.2.6, 7.3.1, 7.3.1 Kibble, T.W.B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2, 212–221, (1961). 3.1.4 Kijowski, J., “A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity”, Gen. Relativ. Gravit., 29, 307–343, (1997). 10, 14, 10.2.1, 10.2.2 Kijowski, J., “A consistent canonical approach to gravitational energy”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12–15 Jun 2002, 129–145, (Pitagora, Bologna, Italy, 2002). 10.2.2 Kijowski, J., and Tulczyjew, W.M., A Symplectic Framework for Field Theories, vol. 107 of Lecture Notes in Physics, (Springer, Berlin, Germany; New York, U.S.A., 1979). 10.2.1, 18, 11.3.1 Koc, P., and Malec, E., “Trapped surfaces in nonspherical open universes”, Acta Phys. Pol. B, 23, 123–133, (1992). 13.2.2 Kodama, H., “Conserved energy flux for the spherically symmetric system and the backre-action problem in the black hole evaporation”, Prog. Theor. Phys., 63, 1217–1228, (1980). Phys., 63, 1217-1228, (1980). Komar, A., “Covariant conservation laws in general relativity”, Phys. Rev., 113, 934–936, (1959). 3.1.5 Kramer, D., Stephani, H., MacCallum, M.A.H., and Herlt, E., Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1980). 4.2.5 Kulkarni, R., Chellathurai, V., and Dadhich, N., “The effective mass of the Kerr spacetime”, Class. Quantum Grav., 5, 1443–1445, (1988). 12.2 Lau, S.R., “Canonical variables and quasi-local energy in general relativity”, Class. Quantum Grav., 10, 2379–2399, (1993). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9307026v3. file corrupt. 10.1.4 Lau, S.R., “Spinors and the reference point of quasi-local energy”, Class. Quantum Grav., 12, 1063–1079, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9409022v2. 10.1.4 Lau, S.R., “New variables, the gravitational action and boosted quasilocal stress-energy-momentum”, Class. Quantum Grav., 13, 1509–1540, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9504026v3. 10.1.4, 10.1.4 Lau, S.R., “Lightcone reference for total gravitational energy”, Phys. Rev. D, 60, 104034-1–4, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9903038. 17, 10.1.7 Lau, S.R., “Lectures given at the ‘International Workshop on Geometric Physics”’, unknown status, (2000). Physics and Mathematical Divisions, NCTS, Hsinchu, Taiwan, 24–26 July. 17, 10.1.7 Lau, S.R., personal communication, (July, 2003). 10.1.7 Lee, J., and Wald, R.M., “Local symmetries and constraints”, J. Math. Phys., 31, 725–743, (1990). 11.3.1 Lind, R.W., Messmer, J., and Newman, E.T., “Equations of motion for the sources of asymptotically flat spaces”, J. Math. Phys., 13, 1884–1891, (1972). 3.2.4 Liu, C.-C.M., and Yau, S.-T., “Positivity of quasilocal mass”, Phys. Rev. Lett., 90, 231102–1-4, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0303019v2. 4.1.4, 9, 10, 10.2.2, 10.4.1, 10.4.1, 10.4.2 Liu, C.-C.M., and Yau, S.-T., “Positivity of quasilocal mass II”, (2004). URL (cited on 21 February 2005): http://arXiv.org/abs/math.DG/0412292v2. 10.4.2 Ludvigsen, M., and Vickers, J.A.G., “The positivity of the Bondi mass”, J. Phys. A, 14, L389–L391, (1981). 3.2.3 Ludvigsen, M., and Vickers, J.A.G., “A simple proof of the positivity of the Bondi mass”, J. Phys. A, 15, L67–L70, (1982). 3.2.3 Ludvigsen, M., and Vickers, J.A.G., “An inequality relating mass and electric charge in general relativity”, J. Phys. A, 16, 1169–1174, (1983). 13.2.1 Ludvigsen, M., and Vickers, J.A.G., “An inequality relating total mass and the area of a trapped surface in general relativity”, J. Phys. A, 16, 3349–3353, (1983). 13.2.1 Ludvigsen, M., and Vickers, J.A.G., “Momentum, angular momentum and their quasi-local null surface extensions”, J. Phys. A, 16, 1155–1168, (1983). 8.1.1, 8.1.2, 8.1.3, 9.1 Malec, E., “Hoop conjecture and trapped surfaces in non-spherical massive systems”, Phys. Rev. Lett., 67, 949–952, (1991). 13.2.2 Malec, E., Mars, M., and Simon, W., “On the Penrose inequality for general horizons”, Phys. Rev. Lett., 88, 121102-1–121102-4, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0201024v2. 10 Malec, E., and Ó Murchadha, N., “Trapped surfaces and the Penrose inequality in spherically symmetric geometries”, Phys. Rev. D, 49, 6931–6934, (1994). 4, 13.2.1 Maluf, J.W., “Hamiltonian formulation of the teleparallel description of general relativity”, J. Math. Phys., 35, 335–343, (1994). 3.1.4 Martinez, E.A., “Quasilocal energy for a Kerr black hole”, Phys. Rev. D, 50, 4920–4928, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9405033v2. 10.1.7 Mason, L.J., “A Hamiltonian interpretation of Penrose’s quasi-local mass”, Class. Quantum Grav., 6, L7–L13, (1989). 7.2.2, 7.3.3 Mason, L.J., and Frauendiener, J., “The Sparling 3-form, Ashtekar variables and quasi-local mass”, in Bailey, T.N., and Baston, R.J., eds., Twistors in Mathematics and Physics, vol. 156 of London Mathematical Society Lecture Note Series, 189–217, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990). 3.2.1, 3.3.1, 7.2.2, 7.3.3, 11.3.4 Miao, P., “On existence of static metric extensions in general relativity”, Commun. Math. Phys., 241, 27–46, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/math-ph/0309041v1. 5.1.3 Misner, C.W., and Sharp, D.H., “Relativistic Equations for Adiabatic, Spherically Symmetric Gravitational Collapse”, Phys. Rev., 136, B 571–B 576, (1964). 4.2.1, 4.2.1 Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco, U.S.A., 1973). 13.2.2 Møller, C., “On the localization of the energy of a physical system in general theory of relativity”, Ann. Phys. (N.Y.), 4, 347–371, (1958). 3.1.2 Møller, C., “Conservation laws and absolute parallelism in general relativity”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 1(10), 1–50, (1961). 3.1.4 Moreschi, O.M., “Unambiguous angular momentum of radiative spacetimes and asymptotic structure in terms of the center of mass system”, (2003). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0305010v1. 3.2.4 Moreschi, O.M., “Intrinsic angular momentum and centre of mass in general relativity”, Class. Quantum Grav., 21, 5409–5425, (2004). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0209097v2. 3.2.4 Moreschi, O.M., and Sparling, G.A.J., “On the positive energy theorem involving mass and electromagnetic charges”, Commun. Math. Phys., 95, 113–120, (1984). 13.2.1 Mukohyama, S., and Hayward, S.A., “Quasi-local first law of black hole mechanics”, Class. Quantum Grav., 17, 2153–2157, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9905085v2. 13.3.1 Nadirashvili, N., and Yuan, Y., “Counterexamples for local isometric embedding”, (2002). URL (cited on 29 January 2004): http://arXiv.org/abs/math.DG/0208127v1. 17 Nahmad-Achar, E., “Is gravitational field energy density well defined for static, spherically symmetric configurations?”, in Blair, D.G., and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8–13 August 1988, 1223–1225, (World Scientific, Singapore; River Edge, U.S.A., 1989). 12.3 Nakao, K., “On a Quasi-Local Energy Outside the Cosmological Horizon”, (1995). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9507022v1. KUNS Preprint KUNS-1352. 4 Nester, J.M., “A new gravitational energy expression with a simple positivity proof”, Phys. Lett. A, 83, 241–242, (1981). 3.2.1 Nester, J.M., “The gravitational Hamiltonian”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 155–163, (Springer, Berlin, Germany; New York, U.S.A., 1984). 3.2.1, 11.3.1, 11.3.2 Nester, J.M., “A gauge condition for orthonormal three-frames”, J. Math. Phys., 30, 624–626, (1989). 3.1.4 Nester, J.M., “A positive gravitational energy proof”, Phys. Lett. A, 139, 112–114, (1989). 3.1.4, 3.2.1 Nester, J.M., “A covariant Hamiltonian for gravity theories”, Mod. Phys. Lett. A, 6, 2655–2661, (1991). 11.3.1, 11.3.2 Nester, J.M., “Special orthonormal frames”, J. Math. Phys., 33, 910–913, (1992). 3.1.4 Nester, J.M., “General pseudotensors and quasilocal quantities”, Class. Quantum Grav., 21, S261–S280, (2004). 11.3.2, 11.3.4 Nester, J.M., Ho, F.H., and Chen, C.-M., “Quasi-local center-of-mass for teleparallel gravity”, (2004). URL (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0403101v1. 11.3.2 Nester, J.M., Meng, F.F., and Chen, C.-M., “Quasi-local center-of-mass”, J. Korean Phys. Soc., 45, S22–S25, (2004). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0403103v2. 11.3.2 Nester, J.M., and Tung, R.-S., “A quadratic spinor Lagrangian for general relativity”, Gen. Relativ. Gravit., 27, 115–119, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9407004. 3.1.4 Newman, E.T., and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 1–36, (Plenum Press, New York, U.S.A., 1980). 3.2, 8 Newman, E.T., and Unti, T.W.J., “Behavior of asymptotically flat empty spaces”, J. Math. Phys., 3, 891–901, (1962). 3.2.3, 8 Ó Murchadha, N., “Total energy-momentum in general relativity”, J. Math. Phys., 27, 2111–2128, (1986). 3.2.1 Ó Murchadha, N., Szabados, L.B., and Tod, K.P., “Comment on “Positivity of Quasilocal Mass””, Phys. Rev. Lett., 92, 259001-1, (2004). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0311006v1. 10.2.2, 10.4.2 Page, D.N., “Defining entropy bounds”, (2000). URL (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0007238. Report No. Alberta-Thy-09-00. 13.4.1 Page, D.N., “Huge Violations of Bekenstein’s Entropy Bound”, (2000). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0005111v1. Report No. Alberta-Thy-06-00. 13.4.1 Page, D.N., “Subsystem entropy exceeding Bekenstein’s bound”, (2000). URL (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0007237v1. Report No. Alberta-Thy-08-00. 13.4.1 Park, M.I., “The Hamiltonian dynamics of bounded spacetime and black hole entropy: The canonical method”, Nucl. Phys. B, 634, 339–369, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0111224v4. 21, 13.3.1 Parker, P.E., “On some theorem of Geroch and Stiefel”, J. Math. Phys., 25, 597–599, (1984). 10.1.4 Pelath, M.A., Tod, K.P., and Wald, R.M., “Trapped surfaces in prolate collapse in the Gibbons-Penrose construction”, Class. Quantum Grav., 15, 3917–3934, (1998). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9805051v1. 13.2.2 Pellegrini, C., and Plebanski, J., “Tetrad fields and gravitational fields”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 2(4), 1–39, (1963). 3.1.4 Penrose, R., “Asymptotic properties of fields and space-times”, Phys. Rev. Lett., 10, 66–68, (1963). 4.2.4 Penrose, R., “Conformal treatment of infinity”, in DeWitt, C., and DeWitt, B.S., eds., Relativity, Groups and Topology, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, 564–584, (Gordon and Breach, New York, U.S.A., 1964). 4.2.4 Penrose, R., “Zero rest-mass fields including gravitation: asymptotic behaviour”, Proc. R. Soc. London, Ser. A, 248, 159–203, (1965). 4.2.4 Penrose, R., “Gravitational collapse: the role of general relativity”, Riv. Nuovo Cimento, 1, 252–276, (1969). reprinted in Gen. Relativ. Gravit. 34 (2002) 1141. 13.2.1 Penrose, R., Techniques of Differential Topology in Relativity, vol. 7 of Regional Conference Series in Applied Mathematics, (SIAM, Philadelphia, U.S.A., 1972). 8.1.2 Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134, (1973). 4.2.5, 13.2.1 Penrose, R., “Null hypersurface initial data for classical fields of arbitrary spin and for general relativity”, Gen. Relativ. Gravit., 12, 225–264, (1980). 11.2.1 Penrose, R., “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, Ser. A, 381, 53–63, (1982). 11, 7.1.2, 7.2.1, 7.2.2, 7.2.3, 7.2.4 Penrose, R., “Mass in general relativity”, in Willmore, T.J., and Hitchin, N., eds., Global Riemannian Geometry, 203–213, (Ellis Horwood; Halsted Press, Chichester, U.K.; New York, U.S.A., 1984). 11, 7.2.1 Penrose, R., “New improved quasi-local mass and the Schwarzschild solutions”, Twistor Newsletter, 1984(18), 7–11, (1984). 7.3, 7.3.1 Penrose, R., “A suggested further modification to the quasi-local formula”, Twistor Newsletter, 1985(20), 7, (1985). 7.3.2 Penrose, R., “Aspects of quasi-local angular momentum”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22–28, 1986, vol. 71 of Contemporary Mathematics, 1–8, (American Mathematical Society, Providence, U.S.A., 1988). 7.2.3 Penrose, R., and Rindler, W., Spinors and space-time. Vol. 1: Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1984). 2, 4.1, 4.1.4, 4.1.6, 8, 10, 7 Penrose, R., and Rindler, W., Spinors and space-time. Vol. 2: Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986). 3.2, 3.2.1, 3.2.3, 4.1, 4.2.4, 8, 4.2.5, 7, 11, 7.1.2, 7.2.2, 7.2.3, 7.2.4, 7.3.1 Perry, M.J., “The positive energy theorem and black holes”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 31–40, (Springer, Berlin, Germany; New York, U.S.A., 1984). 3.2, 3.2.1 Petrov, A.N., and Katz, J., “Conservation laws for large perturbations on curved backgrounds”, in Frere, J.M., Henneaux, M., Servin, A., and Spindel, P., eds., Fundamental Interactions: From Symmetries to Black Holes, Proceedings of the conference held 24–27 March 1999 at the Université Libre de Bruxelles, Belgium, 147–157, (Universite Libre de Bruxelles, Brussels, Belgium, 1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9905088v1. 3.1.3 Petrov, A.N., and Katz, J., “Relativistic conservation laws on curved backgrounds and the theory of cosmological perturbations”, Proc. R. Soc. London, 458, 319–337, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9911025v3. 3.1.2, 3 Pons, J.M., “Boundary conditions from boundary terms, Noether charges and the trace K Lagrangian in general relativity”, Gen. Relativ. Gravit., 35, 147–174, (2003). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0105032v3. 14 Purdue, P., “The gauge invariance of general relativistic tidal heating”, Phys. Rev. D, 60, 104054-1–8, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9901086v2. 13.1 Regge, T., and Teitelboim, C., “Role of surface integrals in the Hamiltonian formulation of general relativity”, Ann. Phys. (N.Y.), 88, 286–318, (1974). 3.2.1, 3.2.2, 3.3.3, 11 Reula, O., “Existence theorem for solutions of Witten’s equation and nonnegativity of total mass”, J. Math. Phys., 23, 810–814, (1982). 3.2.1 Reula, O., and Tod, K.P., “Positivity of the Bondi energy”, J. Math. Phys., 25, 1004–1008, (1984). 3.2.1, 3.2.3 Rosen, N., “Localization of gravitational energy”, Found. Phys., 15, 997–1008, (1986). 3.1.3 Rosenfeld, L., “Sur le tenseur d’impulsion-energie”, Mem. R. Acad. Belg., Cl. Sci., 18(6), (1940). 2.1.2, 2 Rovelli, C., “What is observable is classical and quantum physics?”, Class. Quantum Grav., 8, 297–316, (1991). 3.3.1 Sachs, R.K., “Asymptotic symmetries in gravitational theory”, Phys. Rev., 125, 2851–2864, (1962). 3.2.3 Sachs, R.K., “On the characteristic initial value problem in gravitational theory”, J. Math. Phys., 3, 908–914, (1962). 11.2.1 Saharian, A.A., “Energy-momentum tensor for a scalar field on manifolds with boundaries”, Phys. Rev. D, 69, 085005-1–16, (2004). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/0308108v2. 1 Schoen, R., and Yau, S.-T., “Positivity of the total mass of a general space-time”, Phys. Rev. Lett., 43, 1457–1459, (1979). 3.2.1, 6.2.2 Schoen, R., and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys., 79, 231–260, (1981). 3.2.1 Schoen, R., and Yau, S.-T., “Proof that the Bondi mass is positive”, Phys. Rev. Lett., 48, 369–371, (1982). 3.2.3 Sen, A., “On the existence of neutrino ‘zero-modes’ in vacuum spacetimes”, J. Math. Phys., 22, 1781–1786, (1981). 4.1.2 Senovilla, J.M.M., “Super-energy tensors”, Class. Quantum Grav., 17, 2799–2842, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9906087v1. 2 Senovilla, J.M.M., “(Super)n-energy for arbitrary fields and its interchange: Conserved quantities”, Mod. Phys. Lett. A, 15, 159–166, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9905057v1. 2 Shaw, W.T., “Spinor fields at spacelike infinity”, Gen. Relativ. Gravit., 15, 1163–1189, (1983). 7.2.4 Shaw, W.T., “Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity”, Proc. R. Soc. London, Ser. A, 390, 191–215, (1983). 7.2.4 Shaw, W.T., “Symplectic geometry of null infinity and two-surface twistors”, Class. Quantum Grav., 1, L33–L37, (1984). 7.2.4 Shaw, W.T., “Twistors, asymptotic symmetries and conservation laws at null and spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17–21, 1983, vol. 202 of Lecture Notes in Physics, 165–176, (Springer, Berlin, Germany; New York, U.S.A., 1984). 7.2.4 Shaw, W.T., “The asymptopia of quasi-local mass and momentum: I. General formalism and stationary spacetimes”, Class. Quantum Grav., 3, 1069–1104, (1986). 8, 6.1.2, 6.3, 7.2.4, 8.1.3 Shaw, W.T., “Total angular momentum for asymptotically flat spacetimes with non-vanishing stress tensor”, Class. Quantum Grav., 3, L77–L81, (1986). 7.2.4 Shaw, W.T., “Quasi-local mass for ‘large’ spheres”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22–28, 1986, vol. 71 of Contemporary Mathematics, 15–22, (American Mathematical Society, Providence, U.S.A., 1988). 6.1.2, 7.2.4, 8.1.3 Shi, Y., and Tam, L.-F., “Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature”, J. Differ. Geom., 62, 79–125, (2002). Related online version (cited on 29 January 2004): http://arxiv.org/abs/math.DG/0301047v1. 10.1.7, 10.4.2 Shi, Y., and Tam, L.-F., “Some lower estimates of ADM mass and Brown-York mass”, (2004). URL (cited on 21 February 2005): http://arXiv.org/abs/math.DG/0406559v3. 10.1.7 Smarr, L.L., “Surface geometry of charged rotating black holes”, Phys. Rev. D, 7, 289–295, (1973). 17, 10.1.7 Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys., 19, 549–554, (1978). 3.2.1, 7.2.4 Sparling, G.A.J., “Twistors, spinors and the Einstein vacuum equations”, unknown status, (1982). 3.2.1, 3.3.1, 11.3.1 Spivak, M., A Comprehensive Introduction to Differential Geometry, vol. 5, (Publish or Perish, Berkeley, U.S.A., 1979), 2nd edition. 17 Stewart, J.M., Advanced general relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990). 4.1 Stewart, J.M., and Friedrich, H., “Numerical relativity. I. The characteristic initial value problem”, Proc. R. Soc. London, Ser. A, 384, 427–454, (1982). 11.2.1 Streubel, M., ““Conserved” quantities for isolated gravitational systems”, Gen. Relativ. Gravit., 9, 551–561, (1978). 4.2.5, 7.1.1 Susskind, L., “The world as a hologram”, J. Math. Phys., 36, 6377–6396, (1995). Related online version (cited on 29 January 2004): http://arXiv.org/abs/hep-th/9409089v2. 13.4.2 Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math. Phys., 28, 2688–2691, (1987). 4.2.5 Szabados, L.B., “Canonical pseudotensors, Sparling’s form and Noether currents”, unknown status, (1991). KFKI Report 1991-29/B. 2, 3.1.2, 3, 3.1.4, 3.3.1, 11.3.4 Szabados, L.B., “On canonical pseudotensors, Sparling’s form and Noether currents”, Class. Quantum Grav., 9, 2521–2541, (1992). 3.1.2, 3, 3.3.1, 11.3.4 Szabados, L.B., “On the positivity of the quasi-local mass”, Class. Quantum Grav., 10, 1899–1905, (1993). 2.2, 2.2.3, 8.1.3, 8.2.1, 8.2.3, 8.2.3, 9.2, 14.1 Szabados, L.B., “Two dimensional Sen connections”, in Kerr, R.P., and Perjés, Z., eds., Relativity Today, Proceedings of the Fourth Hungarian Relativity Workshop, July 12–17, 1992, Gárdony, 63–68, (Akadémiai Kiadó, Budapest, Hungary, 1994). 4.1 Szabados, L.B., “Two dimensional Sen connections and quasi-local energy-momentum”, Class. Quantum Grav., 11, 1847–1866, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9402005v1. 4.1.6, 4.1.7, 7.2.2, 7.2.3, 8.2.1, 8.2.3, 8.2.3, 8.2.4, 9.2 Szabados, L.B., “Two dimensional Sen connections in general relativity”, Class. Quantum Grav., 11, 1833–1846, (1994). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9402001v1. 4.1 Szabados, L.B., “Quasi-local energy-momentum and two-surface characterization of the pp-wave spacetimes”, Class. Quantum Grav., 13, 1661–1678, (1996). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9512013v1. 2.2, 2.2.3, 2.2.5, 4.1, 4.1.3, 9.2, 13.5 Szabados, L.B., “Quasi-local energy-momentum and the Sen geometry of two-surfaces”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, vol. 41 of Banach Center Publications, 205–219, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, Poland, 1997). 4.1 Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for small spheres”, Class. Quantum Grav., 16, 2889–2904, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9901068v1. 6, 8.1.3, 12, 9, 9.1, 9.2 Szabados, L.B., “On certain global conformal invariants and 3-surface twistors of initial data sets”, Class. Quantum Grav., 17, 793–811, (2000). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9909052v1. 7.2.5 Szabados, L.B., “Quasi-local energy-momentum and angular momentum in general relativity I.: The covariant Lagrangian approach”, unknown status, (2000). 8 Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for large spheres near the null infinity”, Class. Quantum Grav., 18, 5487–5510, (2001). Related online version (cited on 29 January 2004): http://arxiv.org/abs/gr-qc/0109047. Corrigendum: Class. Quantum Grav. 19 2333 (2002). 3.2.3, 3.2.4, 4.1.7, 8, 8, 7.2.3, 9, 9.2, 9.2, 13.5 Szabados, L.B., “On the roots of the Poincaré structure of asymptotically flat spacetimes”, Class. Quantum Grav., 20, 2627–2661, (2003). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0302033v2. 2.2.4, 3.2.2, 21 Szabados, L.B., “Quasi-local holography and quasi-local mass of classical fields in Minkowski spacetime”, Class. Quantum Grav., 22, 855–878, (2005). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0411148v2. 2.2.5, 8.2.3, 13.4.2 ’t Hooft, G., “Dimensional Reduction in Quantum Gravity”, (1993). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9310026v1. Utrecht preprint THU-93/26. 13.4.2 Thorne, K.S., “Nonspherical gravitational collapse, a short review”, in Klauder, J., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of His Sixtieth Birthday, 231–258, (W.H. Freeman, San Francisco, U.S.A., 1972). 13.2.2 Tipler, F.J., “Penrose’s quasi-local mass in the Kantowski-Sachs closed universe”, Class. Quantum Grav., 2, L99–L103, (1985). 7.2.5 Tod, K.P., “All metrics admitting super-covariantly constant spinors”, Phys. Lett. B, 121, 241–244, (1983). 13.2.1 Tod, K.P., “Quasi-local charges in Yang-Mills theory”, Proc. R. Soc. London, Ser. A, 389, 369–377, (1983). 7.2.1 Tod, K.P., “Some examples of Penrose’s quasi-local mass construction”, Proc. R. Soc. London, Ser. A, 388, 457–477, (1983). 7.1.2, 7.2.3, 7.2.4, 7.2.5, 12.1 Tod, K.P., “More on quasi-local mass”, Twistor Newsletter(18), 3–6, (1984). 7.2.6, 7.2.6, 7.3.1 Tod, K.P., “Three-surface twistors and conformal embedding”, Gen. Relativ. Gravit., 16, 435–443, (1984). 7.2.5 Tod, K.P., “Penrose’s quasi-local mass and the isoperimetric inequality for static black holes”, Class. Quantum Grav., 2, L65–L68, (1985). 7.2.5, 13.2.1 Tod, K.P., “More on Penrose’s quasilocal mass”, Class. Quantum Grav., 3, 1169–1189, (1986). 4.1, 7.2.3, 7.2.5, 13.2.1 Tod, K.P., “Quasi-local mass and cosmological singularities”, Class. Quantum Grav., 4, 1457–1468, (1987). 7.2.5 Tod, K.P., “Penrose’s quasi-local mass”, in Bailey, T.N., and Baston, R.J., eds., Twistors in Mathematics and Physics, vol. 156 of London Mathematical Society Lecture Note Series, 164–188, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1990). 7, 7.2.2, 7.2.3, 7.2.4, 7.2.5, 7.3, 7.3.1, 7.3.2 Tod, K.P., “Penrose’s quasi-local mass and cylindrically symmetric spacetimes”, Class. Quantum Grav., 7, 2237–2266, (1990). 7.2.5 Tod, K.P., “The hoop conjecture and the Gibbons-Penrose construction of trapped surfaces”, Class. Quantum Grav., 9, 1581–1591, (1992). 13.2.2 Tod, K.P., “The Stützfunktion and the cut function”, in Janis, A.I., and Porter, J.R., eds., Recent Advances in General Relativity: Essays in honor of Ted Newman, Papers from the Discussion Conference on Recent Advances in General Relativity, held at the University of Pittsburgh, May 3–5, 1990, vol. 4 of Einstein Studies, 182–195, (Birkhäuser, Boston, U.S.A., 1992). 4.1, 4.1.3, 10.4.2 Torre, C.G., “Null surface geometrodynamics”, Class. Quantum Grav., 3, 773–791, (1986). 11.2.1 Trautman, A., “Conservation laws in general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, 169–198, (Wiley, New York, U.S.A., 1962). 3.1.2, 3, 4.2.5 Tung, R.-S., and Nester, J.M., “The quadratic spinor Lagrangian is equivalent to the telepar-allel theory”, Phys. Rev. D, 60, 021501-1–5, (1999). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9809030v2. 3.1.4 Tung, R.S., and Jacobson, T., “Spinor 1-forms as gravitational potentials”, Class. Quantum Grav., 12, L51–L55, (1995). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/9502037v1. 3.1.4 Unruh, W.G., and Wald, R.M., “Acceleration radiation and the generalized second law of thermodynamics”, Phys. Rev. D, 25, 942–958, (1982). 13.4.1 Utiyama, R., “Invariant theoretical interpretation of interactions”, Phys. Rev., 101, 1597–1607, (1956). 3.1.4 Wald, R.M., General Relativity, (University of Chicago Press, Chicago, U.S.A., 1984). 2.2.2, 3.2.2, 4.2.5, 14, 12.1, 13.3.1 Wald, R.M., “On identically closed forms locally constructed from a field”, J. Math. Phys., 31, 2378–2384, (1990). 2.2.1, 11.3.1 Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, 3427–3431, (1993). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9307038v1. 2.1.2, 11.3.1, 13.3.1 Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics, (University of Chicago Press, Chicago, U.S.A., 1994). 13.3.1, 13.4.1 Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, (1997). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9710068v3. EFI Preprint No. 97-43. 13.2.2 Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6, (2001). URL (cited on 29 January 2004): http://www.livingreviews.org/lrr-2001-6. 13.3.1, 13.4.2 Weinstein, G., and Yamada, S., “On a Penrose inequality with charge”, (2004). URL (cited on 21 February 2005): http://arXiv.org/abs/math.DG/0405602v3. 13.2.1 Winicour, J., “Angular momentum in general relativity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, vol. 2, 71–96, (Plenum Press, New York, U.S.A., 1980). 3.2, 3.2.3 Winicour, J.H., and Tamburino, L., “Lorentz-covariant gravitational energy-momentum linkages”, Phys. Rev. Lett., 15, 601–605, (1965). 3.2.3, 3.2.3, 3.2.4 Wipf, A., “Hamilton’s formalism for systems with constraints”, in Ehlers, J., and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13–17 September 1993, vol. 434 of Lecture Notes in Physics, 22–58, (Springer, Berlin, Germany; New York, U.S.A., 1994). 2.2.2, 4.3.1 Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 30, 381–402, (1981). 3.2.1 Woodhouse, N.M.J., “Ambiguities in the definition of quasi-local mass”, Class. Quantum Grav., 4, L121–L123, (1987). 7.2.6, 7.3.1 Yau, S.-T., “Geometry of three manifolds and existence of black holes due to boundary effect”, Adv. Theor. Math. Phys., 5, 755–767, (2001). Related online version (cited on 29 January 2004): http://arxiv.org/abs/math.DG/0109053v2. 10.4.2 Yoon, J.H., “Quasi-local energy conservation law derived from the Einstein’s equations”, (1998). URL (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/9806078v1. 11.2.2 Yoon, J.H., “Quasi-local energy for general spacetimes”, J. Korean Phys. Soc., 34, 108–111, (1999). 11.2.2 Yoon, J.H., “Quasi-local conservation equations in general relativity”, Phys. Lett. A, 292, 166–172, (2001). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0004074v2. 11.2.2 Yoon, J.H., “(1+1)-dimensional formalism and quasi-local conservation equations”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12–15 Jun 2002, (Pitagora, Bologna, Italy, 2002). Related online version (cited on 29 January 2004): http://www.arxiv.org/abs/gr-qc/0212042v1. 11.2.2 Yoon, J.H., “New Hamiltonian formalism and quasilocal conservation equations of general relativity”, Phys. Rev. D, 70, 084037-1–20, (2004). Related online version (cited on 21 February 2005): http://arXiv.org/abs/gr-qc/0406047v2. 11.2.2 York, J.W., “Role of conformal three-geometry in the dynamics of gravitation”, Phys. Rev. Lett., 28, 1082–1085, (1972). 14 York Jr, J.W., “Boundary terms in the action principles of general relativity”, Found. Phys., 16, 249–257, (1986). 14 Yoshino, H., Nambu, Y., and Tomimatsu, A., “Hoop conjecture for colliding black holes: Non-time-symmetric initial data”, Phys. Rev. D, 65, 064034-1–6, (2002). Related online version (cited on 29 January 2004): http://arXiv.org/abs/gr-qc/0109016v1. 13.2.2 Zannias, T., “Trapped surfaces on a spherically symmetric initial data set”, Phys. Rev. D, 45, 2998–3001, (1992). 4, 13.2.1 Zaslavskii, O.B., “Entropy and action bounds for charged black holes”, Gen. Relativ. Gravit., 24, 973–983, (1992). 13.4.1