Broadband metamaterial as an “invisible” radiative cooling coat

Optics Communications - Tập 407 - Trang 204-207 - 2018
Yijia Huang1,2, Mingbo Pu1, Zeyu Zhao1, Xiong Li1, Xiaoliang Ma1, Xiangang Luo1
1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu 610209, China
2University of Chinese Academy of Sciences, Beijing 100049, PR China

Tài liệu tham khảo

Raman, 2014, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515, 540, 10.1038/nature13883 Rephaeli, 2013, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett., 13, 1457, 10.1021/nl4004283 Micco, 2013, Light trapping efficiency of periodic and quasiperiodic back-reflectors for thin film solar cells: A comparative study, J. Appl. Phys., 114, 063103, 10.1063/1.4817914 Feng, 2012, Engineering the dispersion of metamaterial surface for broadband infrared absorption, Opt. Lett., 37, 2133, 10.1364/OL.37.002133 Guo, 2014, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion, Sci. Rep., 5 Liu, 2010, Infrared perfect absorber and its application as plasmonic sensor, Nano Lett., 10, 2342, 10.1021/nl9041033 Mason, 2011, Strong absorption and selective thermal emission from a midinfrared metamaterial, Appl. Phys. Lett., 98, 1130, 10.1063/1.3600779 Cui, 2012, Ultra-broadband light absorption by a sawtooth anisotropic metamaterial slab, Nano Lett., 12, 1443, 10.1021/nl204118h Biener, 2007, Metallic subwavelength structures for a broadband infrared absorption control, Opt. Lett., 32, 994, 10.1364/OL.32.000994 Du, 2017, Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST, Light Sci. Appl., 6, 10.1038/lsa.2016.194 Luo, 2015, Principles of electromagnetic waves in metasurfaces, Sci. China. Phys. Mech. Astron., 58, 594201, 10.1007/s11433-015-5688-1 Pu, 2017, Merging plasmonics and metamaterials by two-dimensional subwavelength structures, J. Mater. Chem. C, 5, 4361, 10.1039/C7TC00440K Streyer, 2013, Strong absorption and selective emission from engineered metals with dielectric coatings, Opt. Express, 21, 9113, 10.1364/OE.21.009113 Hao, 2010, High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett., 96, 4184, 10.1063/1.3442904 Macleod, 2010 Maciá, 2015, Thermal emission control via bandgap engineering in aperiodically designed nanophotonic devices, Nanomaterials, 5, 814, 10.3390/nano5020814 Pu, 2011, Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Opt. Express, 19, 17413, 10.1364/OE.19.017413 Bossard, 2014, Near-Ideal optical metamaterial absorbers with super-octave bandwidth, Acs Nano, 8, 1517, 10.1021/nn4057148 Weile, 1996, Genetic algorithm design of Pareto optimal broadband microwave absorbers, IEEE Trans. Electromagn. Compat., 38, 518, 10.1109/15.536085 Zhan, 2012, Transfer matrix method for optics in graphene layers, J. Phys. Condens. Matter Inst., 25, 215301, 10.1088/0953-8984/25/21/215301 Arriaga, 2006, Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index, J. Appl. Phys., 100, 10.1063/1.2336078 Liu, 2011, Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.045901 Yang, 2016, A metasurface carpet cloak for electromagnetic, acoustic and water waves, Sci. Rep., 6 Orazbayev, 2015, Terahertz carpet cloak based on a ring resonator metasurface, Phys. Rev. B, 91, 195444, 10.1103/PhysRevB.91.195444 Pendry, 2006, Controlling electromagnetic fields, Science, 312, 1780, 10.1126/science.1125907 Fisenko, 1999, Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law, J. Phys. D, 32, 2882, 10.1088/0022-3727/32/22/309