Broadband metamaterial as an “invisible” radiative cooling coat
Tài liệu tham khảo
Raman, 2014, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515, 540, 10.1038/nature13883
Rephaeli, 2013, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling, Nano Lett., 13, 1457, 10.1021/nl4004283
Micco, 2013, Light trapping efficiency of periodic and quasiperiodic back-reflectors for thin film solar cells: A comparative study, J. Appl. Phys., 114, 063103, 10.1063/1.4817914
Feng, 2012, Engineering the dispersion of metamaterial surface for broadband infrared absorption, Opt. Lett., 37, 2133, 10.1364/OL.37.002133
Guo, 2014, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion, Sci. Rep., 5
Liu, 2010, Infrared perfect absorber and its application as plasmonic sensor, Nano Lett., 10, 2342, 10.1021/nl9041033
Mason, 2011, Strong absorption and selective thermal emission from a midinfrared metamaterial, Appl. Phys. Lett., 98, 1130, 10.1063/1.3600779
Cui, 2012, Ultra-broadband light absorption by a sawtooth anisotropic metamaterial slab, Nano Lett., 12, 1443, 10.1021/nl204118h
Biener, 2007, Metallic subwavelength structures for a broadband infrared absorption control, Opt. Lett., 32, 994, 10.1364/OL.32.000994
Du, 2017, Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST, Light Sci. Appl., 6, 10.1038/lsa.2016.194
Luo, 2015, Principles of electromagnetic waves in metasurfaces, Sci. China. Phys. Mech. Astron., 58, 594201, 10.1007/s11433-015-5688-1
Pu, 2017, Merging plasmonics and metamaterials by two-dimensional subwavelength structures, J. Mater. Chem. C, 5, 4361, 10.1039/C7TC00440K
Streyer, 2013, Strong absorption and selective emission from engineered metals with dielectric coatings, Opt. Express, 21, 9113, 10.1364/OE.21.009113
Hao, 2010, High performance optical absorber based on a plasmonic metamaterial, Appl. Phys. Lett., 96, 4184, 10.1063/1.3442904
Macleod, 2010
Maciá, 2015, Thermal emission control via bandgap engineering in aperiodically designed nanophotonic devices, Nanomaterials, 5, 814, 10.3390/nano5020814
Pu, 2011, Design principles for infrared wide-angle perfect absorber based on plasmonic structure, Opt. Express, 19, 17413, 10.1364/OE.19.017413
Bossard, 2014, Near-Ideal optical metamaterial absorbers with super-octave bandwidth, Acs Nano, 8, 1517, 10.1021/nn4057148
Weile, 1996, Genetic algorithm design of Pareto optimal broadband microwave absorbers, IEEE Trans. Electromagn. Compat., 38, 518, 10.1109/15.536085
Zhan, 2012, Transfer matrix method for optics in graphene layers, J. Phys. Condens. Matter Inst., 25, 215301, 10.1088/0953-8984/25/21/215301
Arriaga, 2006, Band structure and reflectivity of omnidirectional Si-based mirrors with a Gaussian profile refractive index, J. Appl. Phys., 100, 10.1063/1.2336078
Liu, 2011, Taming the blackbody with infrared metamaterials as selective thermal emitters, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.045901
Yang, 2016, A metasurface carpet cloak for electromagnetic, acoustic and water waves, Sci. Rep., 6
Orazbayev, 2015, Terahertz carpet cloak based on a ring resonator metasurface, Phys. Rev. B, 91, 195444, 10.1103/PhysRevB.91.195444
Pendry, 2006, Controlling electromagnetic fields, Science, 312, 1780, 10.1126/science.1125907
Fisenko, 1999, Determination of the true temperature of emitted radiation bodies from generalized Wien’s displacement law, J. Phys. D, 32, 2882, 10.1088/0022-3727/32/22/309