Impact resistance of fiber-metal laminates: A review

International Journal of Impact Engineering - Tập 49 - Trang 77-90 - 2012
M. Sadighi1, R.C. Alderliesten2, R. Benedictus2
1Department of Mechanical Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
2Structures and Materials Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

Tài liệu tham khảo

Remmers JC. Discontinuities in materials and structures: a unifying computational approach, PhD Thesis, Delft University of Technology, 2008. Marissen, 1981 Gunnink, 1982, Application of a new hybrid material (Arall) in aircraft structures, 990 Marissen, 1989, Mechanical aspects related to fiber fracture in Arall-2 laminates, Adv Fat Sci Tech, 159, 697, 10.1007/978-94-009-2277-8_31 2001 Vlot, 2001 2002, 10.1007/0-306-48385-8 Vlot, 2000, Towards technology readiness of fiber metal laminates – Glare technology development 1997–2000, 1 Vlot, 1999, Towards application of fiber-metal laminates in large aircraft, Aircraft Eng Aerospace Technol Int J, 71, 558, 10.1108/00022669910303711 Laliberte, 2000, Applications of fiber-metal laminates, Polym Composites, 21, 558, 10.1002/pc.10211 Afaghi-Khatibi, 2000, On the fracture mechanical behaviour of fiber reinforced metal laminates (FRMLs), Compu Methods Appl Mech Engrg, 185, 173, 10.1016/S0045-7825(99)00258-3 Vogelesang, 2000, Development of fiber-metal laminates for advanced aerospace structures, J Mater Processing Technol, 103, 1, 10.1016/S0924-0136(00)00411-8 Vlot, 2002, Fiber-metal laminates: a state of art, Int J Mater Prod Technol, 17, 79, 10.1504/IJMPT.2002.001301 Vermeeren, 2003, An historic overview of the development of fiber-metal laminates, Appl Composite Mater, 10, 189, 10.1023/A:1025533701806 Wu, 2005, The mechanical behaviour of Glare laminates for aircraft structures, J Metals, 72 Botelho, 2006, A review on the development and properties of continuous fiber/epoxy/aluminium hybrid composites for aircraft structures, Mater Res, 9, 247, 10.1590/S1516-14392006000300002 Alderliesten, 2007 Alderliesten, 2003, Fatigue and damage tolerance of Glare, Appl Composite Mater, 10, 223, 10.1023/A:1025537818644 Vlot, 1993, Impact properties of fiber-metal laminates, Composite Eng, 3, 911, 10.1016/0961-9526(93)90001-Z Vlot, 1993 Hoo Fatt, 2003, Ballistic impact of Glare fiber-metal laminates, Compos Struct, 61, 73, 10.1016/S0263-8223(03)00036-9 Compston, 2001, Impact perforation resistance and fracture mechanisms of a thermoplastic based fiber-metal laminate, J Mater Sci, 20, 597, 10.1023/A:1010904930497 Cantwell, 1991, The impact resistance of composite materials – a review, Composites, 22, 347, 10.1016/0010-4361(91)90549-V Richardson, 1996, Review of low-velocity impact properties of composite materials, Composites Part A, 27, 1123, 10.1016/1359-835X(96)00074-7 Abrate, 1998 Johnson, 1986 Vlot, 1996, Impact loading on fiber-metal laminates, Int J Impact Eng, 18, 291, 10.1016/0734-743X(96)89050-6 Caprino, 2004, Low-velocity impact behaviour of fibre glass-aluminium laminates, Compos Appl Sci Manuf, 35, 605, 10.1016/j.compositesa.2003.11.003 Atas, 2007, An experimental investigation on the impact response of fiberglass/aluminium composites, J Reinf Plast Comp, 26, 1479, 10.1177/0731684407079749 Vlot, 1992 Liu, 2010, Effects of constituents and lay-up configuration on drop-weight tests of fiber-metal laminates, Appl Comp Mater, 17, 43, 10.1007/s10443-009-9119-1 Vlot, 1987 Cortes, 2004, Fracture properties of a fiber-metal laminates based on magnesium alloy, J Mater Sci, 39, 1081, 10.1023/B:JMSC.0000012949.94672.77 Cortes, 2006, The fracture properties of a fiber-metal laminate based on magnesium alloy, Compos B Eng, 37, 163, 10.1016/j.compositesb.2005.06.002 Alderliesten, 2008, The applicability of magnesium based fiber-metal laminates in aerospace structures, Composite Sci Technol, 68, 2983, 10.1016/j.compscitech.2008.06.017 Johnson, 1996, High temperature hybrid titanium composite laminates: an early analytical assessment, Appl Composite Mater, 3, 379, 10.1007/BF00133681 Cortes, 2006, The prediction of tensile failure in titanium-based thermoplastic fiber-metal laminates, Composites Sci Technol, 66, 2306, 10.1016/j.compscitech.2005.11.031 Cortes, 2006, Structure – properties relations in titanium-based thermoplastic fiber-metal laminates, Polym Composites, 264, 10.1002/pc.20189 Johnson, 2008, Crack growth of internal titanium plies of a fibermetal laminates, Composites Part A, 39, 1705, 10.1016/j.compositesa.2008.07.017 Tarpani, 2009, Charpy impact toughness of conventional and advanced composite laminates for aircraft construction, Mater Res, 12, 395, 10.1590/S1516-14392009000400004 Van Rooijen RGJ. Bearing strength characteristics of standard and steel reinforced Glare, PhD Thesis, Delft University of Technology, 2006. Cortes, 2007, The impact properties of high-temperature fiber-metal laminates, J Composite Mater, 41, 613, 10.1177/0021998306065291 Reyes, 2000, The mechanical properties of fiber-metal laminates based on glass fiber reinforced polypropylene, Composite Sci Technol, 60, 1085, 10.1016/S0266-3538(00)00002-6 Langden, 2007, Failure characterization of blast-loaded fiber-metal laminate panels based on aluminium and glass-fiber reinforced polypropylene, Compos Sci Technol, 67, 1385, 10.1016/j.compscitech.2006.09.010 Reyes, 2007, Mechanical behavior of lightweight thermoplastic fiber-metal laminates, J Mater Processing Technol, 186, 284, 10.1016/j.jmatprotec.2006.12.050 Kulkarni, 2008, Characterization of long fiber thermoplastic/metal laminates, J Mater Sci, 43, 4391, 10.1007/s10853-007-2437-5 Abdullah, 2006, The impact resistance of propylene-based fiber-metal laminates, Composites Sci Technol, 66, 1682, 10.1016/j.compscitech.2005.11.008 Reyes Villanueva, 2004, The high velocity impact response of composites and FML-reinforced sandwich structures, Composites Sci Technol, 64, 35, 10.1016/S0266-3538(03)00197-0 Liu, 2004, Drop-weight impact on fiber-metal laminates using various indenters Vlot, 1997, Impact damage resistance of various fiber-metal laminates, J Phys IV France, 7, 1045 Liaw, 2001, Impact damage mechanisms in fiber- metal laminates Laliberte, 2005, Impact damage in fiber-metal laminates, part 1: experiment, AIAA J, 43, 2445, 10.2514/1.15159 Laliberte, 2002, Post-impact fatigue damage growth in fiber-metal laminates, Int J Fatigue, 24, 249, 10.1016/S0142-1123(01)00079-2 Wu, 2007, The impact properties and damage tolerance and of bi-directionally reinforced fiber metal laminates, J Mater Sci, 42, 948, 10.1007/s10853-006-0014-y Fan, 2010, The low-velocity impact response of fiber-metal laminates, J Reinf Plast Comp, 1 Vlot, 1998, Impact response of fiber-metal laminates, Key Eng Mater, 141–143, 235, 10.4028/www.scientific.net/KEM.141-143.235 McKown, 2008, Investigation of scaling effects in fiber-metal laminates, J Composite Mater, 42, 865, 10.1177/0021998308089750 Carrillo, 2008, Scaling effects in the low velocity impact response of fiber-metal laminates, J Reinf Plast Comp, 27, 893, 10.1177/0731684407084904 Hagenbeek, 2001, Impact properties, 409 Langdon, 2010, Fiber-metal laminate panels subjected to blast loading, 269 Langdon, 2005, The blast response of novel thermoplastic based fiber-metal laminates – some preliminary results and observations, Composites Sci Technol, 65, 861, 10.1016/j.compscitech.2004.09.025 Langdon, 2007, Localized blast loading of fiber-metal laminates with a polyamide matrix, Composites Part B, 38, 902, 10.1016/j.compositesb.2006.11.005 Langdon, 2007, Behaviour of fiber-metal laminates subjected to localized blast loading: part 1-experimental observations and failure analysis, Int J Impact Eng, 34, 1202, 10.1016/j.ijimpeng.2006.05.008 Lemanski, 2007, Behaviour of fiber-metal laminates subjected to localized blast loading: part 2- quantitative analysis, Int J Impact Eng, 34, 1223, 10.1016/j.ijimpeng.2006.05.009 Langdon, 2008, The response of fiber-metal laminates subjected to uniformly distributed blast loading, Euro J Mechanics A/Solids, 27, 105, 10.1016/j.euromechsol.2007.09.003 Langdon, 2009, Response of Glare panels to blast loading, Eng Structures, 31, 3116, 10.1016/j.engstruct.2009.07.010 Vlot, 1993, 10.1016/j.engstruct.2009.07.010 Shivakumar, 1985, Prediction of low-velocity impact damage in circular thin laminates, AIAA J, 23, 442, 10.2514/3.8933 Haskel, 1975, Damage tolerance of semimonocoque aircraft, 10.2514/3.8933 Calder, 1971, Plastic deformation and perforation of thin plates resulting from projectile impact, Int J Solids Struct, 7, 863, 10.1016/0020-7683(71)90096-5 Nam, 2003, A model of damage initiation in singly oriented ply fiber-metal laminate under concentrated loads, J Composite Mater, 37, 269, 10.1016/0020-7683(71)90096-5 Tsamasphyros, 2008, Response of circular Glare fiber-metal laminates under lateral indentation, 10.1177/0021998303037003497 Tsamasphyros, 2009, Finite element modeling and analytical simulation of circular Glare fiber-metal laminates subjected to lateral indentation, J Serbian Soc Computational Mechanics, 3, 67 Sun, 1993, Characterization of impact damage in Arall laminates, Composites Sci Technol, 49, 139, 10.1016/0266-3538(93)90053-J Caprino, 2007, A simple mechanistic model to predict the macroscopic response of fiberglass- aluminium laminates under low-velocity impact, Composites Part A, 38, 290, 10.1016/0266-3538(93)90053-J Abatan, 2002, Effect of cross section material distribution on impact response of hybrid composites, J Thermoplastic Composite Mater, 15, 375, 10.1016/j.compositesa.2006.04.005 Payeganeh, 2010, Dynamic response of fiber-metal laminates subjected to low-velocity impact, Thin –Walled Structures, 49, 62, 10.1177/0892705702015005732 Li, 2002, Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part 1. A FEM numerical model, Compos Appl Sci Manuf, 33, 1055, 10.1016/j.tws.2009.07.005 Davies, 1994, Numerical modeling of impact damage, Composites, 25, 342, 10.1016/S1359-835X(02)00081-7 Zhang, 1998, Impact damage in composite aircraft structures- experimental testing and numerical simulation, ImechE, Part G, J Aerospace Eng, 212, 245, 10.1016/S0010-4361(94)80004-9 Laliberte, 2002 Song, 2010, Experimental and numerical investigation on impact performance of carbon reinforced aluminium laminates, J Mater Sci Technol, 26, 327, 10.1016/S1005-0302(10)60053-9 Seo, 2010, Numerical simulation of glass-fiber- reinforced aluminium laminates with diverse impact damage, AIAA J, 48, 676, 10.1016/S1005-0302(10)60053-9 Guan, 2009, Numerical modeling of the impact response of fiber-metal laminates, Polym Composites, 603, 10.2514/1.45551 McCarthy, 2005, Modeling bird impacts on an aircraft wing – part 1: material modeling of the fiber metal laminate leading edge material with continuum damage mechanics, Int J Crashworthiness, 10, 41, 10.1002/pc.20594 Karagiozova, 2008, 10.1533/ijcr.2005.0324 F. Hashagen, Numerical analysis of failure mechanisms in fiber-metal laminates, PhD Thesis, Delft University of Technology, 1998. Linde, 2004 Moussavi Torshizi, 2010, A study on tensile properties of a novel fiber metal laminates, Mater Sci Eng A, 527, 4920, 10.1016/j.msea.2010.04.028 Alderliesten, 2009, On the development of hybrid material concepts for aircraft structures, Recent Patents on Engineering, 3, 25, 10.1016/j.msea.2010.04.028 Herrmann, 2005, 10.2174/187221209787259893 Bagnoli, 2009, The response of aluminium/Glare hybrid materials to impact and to in-plane fatigue, Mater Sci Eng A, 523, 118, 10.1016/j.msea.2009.05.055 Seyed Yaghoubi, 2012, Stacking sequence and geometrical effects on low-velocity impact behaviors of Glare5 (3/2) fiber-metal laminates, J Thermoplastic Composite Mater, 25, 223, 10.1016/j.msea.2009.05.055 Seyed Yaghoubi, 2012, Low-velocity impact on Glare 5 fiber-metal laminates: influences of specimen thickness and impactor mass, J Aerospace Eng, 10.1177/0892705711408165 Sadighi, 2012, Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber-metal laminates, Appl Composite Mater, 10.1007/s10443-011-9235-6 Fan, 2011, Numerical modeling of perforation failure in fiber-metal laminates subjected to low velocity impact loading, Compos Struct, 93, 2430, 10.1016/j.compstruct.2011.04.008