On modelling of laser assisted machining: Forward and inverse problems for heat placement control

Zhendong Shang1,2, Zhirong Liao1, Jon Ander Sarasua3, John Billingham4, Dragos Axinte1
1Machining and Condition Monitoring Group, Faculty of Engineering, University of Nottingham, NG7 2RD, UK
2School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
3IK4-TEKNIKER, Polo Tecnológico de Eibar, c/Iñaki Goenaga 5, Eibar, Guipuzcoa, Spain
4School of Mathematical Sciences, Faculty of Science, University of Nottingham, NG7 2RD, UK

Tài liệu tham khảo

Kuo, 2017, Multiple criteria optimisation in coated abrasive grinding of titanium alloy using minimum quantity lubrication, Int. J. Mach. Tool Manufact., 115, 47, 10.1016/j.ijmachtools.2016.12.004 Liao, 2018, On the influence of gamma prime upon machining of advanced nickel based superalloy, CIRP Ann. - Manuf. Technol., 67, 109, 10.1016/j.cirp.2018.03.021 Gavalda Diaz, 2017, Towards understanding the cutting and fracture mechanism in Ceramic Matrix Composites, Int. J. Mach. Tool Manufact., 118–119, 12, 10.1016/j.ijmachtools.2017.03.008 Dargusch, 2018, Effect of tool wear evolution on chip formation during dry machining of Ti-6Al-4V alloy, Int. J. Mach. Tool Manufact., 126, 13, 10.1016/j.ijmachtools.2017.12.003 Thakur, 2016, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tool Manufact., 100, 25, 10.1016/j.ijmachtools.2015.10.001 Gao, 2015, Multi-scale statistical signal processing of cutting force in cutting tool condition monitoring, Int. J. Adv. Manuf. Technol., 80, 1843, 10.1007/s00170-015-7116-0 Oezkaya, 2016, Experimental studies and CFD simulation of the internal cooling conditions when drilling Inconel 718, Int. J. Mach. Tool Manufact., 108, 52, 10.1016/j.ijmachtools.2016.06.003 Zhang, 2018, Effect of apex offset inconsistency on hole straightness deviation in deep hole gun drilling of Inconel 718, Int. J. Mach. Tool Manufact., 125, 123, 10.1016/j.ijmachtools.2017.11.011 Liao, 2016, Multi-scale hybrid HMM for tool wear condition monitoring, Int. J. Adv. Manuf. Technol., 84, 2437, 10.1007/s00170-015-7895-3 Lee, 2016, Laser and arc manufacturing processes: a review, Int. J. Precis. Eng. Manuf., 17, 973, 10.1007/s12541-016-0119-4 Shams, 2017, Thermal-assisted machining of titanium alloys, 49 Brandt, 2013, Laser assisted machining : current status and future scope, 113 Rashid, 2012, An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy, Int. J. Mach. Tool Manufact., 63, 58, 10.1016/j.ijmachtools.2012.06.004 a.Navas, 2013, Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM), Int. J. Mach. Tool Manufact., 74, 19, 10.1016/j.ijmachtools.2013.06.009 Ahn, 2016, A study on the energy efficiency of specific cutting energy in laser-assisted machining, Appl. Therm. Eng., 94, 748, 10.1016/j.applthermaleng.2015.10.129 Anderson, 2006, Laser-assisted machining of Inconel 718 with an economic analysis, Int. J. Mach. Tool Manufact., 46, 1879, 10.1016/j.ijmachtools.2005.11.005 Dumitrescu, 2006, High-power diode laser assisted hard turning of AISI D2 tool steel, Int. J. Mach. Tool Manufact., 46, 2009, 10.1016/j.ijmachtools.2006.01.005 Dandekar, 2010, Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining, Int. J. Mach. Tool Manufact., 50, 174, 10.1016/j.ijmachtools.2009.10.013 Venkatesan, 2017, The study on force, surface integrity, tool life and chip on laser assisted machining of inconel 718 using Nd: YAG laser source, J. Adv. Res., 8, 407, 10.1016/j.jare.2017.05.004 Kong, 2017, Optimization of surface roughness in laser-assisted machining of metal matrix composites using Taguchi method, Int. J. Adv. Manuf. Technol., 89, 529, 10.1007/s00170-016-9115-1 Germain, 2006, Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6Al 4V), Mater. Sci. Forum, 524 Germain, 2011, Comprehension of chip formation in laser assisted machining, Int. J. Mach. Tool Manufact., 51, 230, 10.1016/j.ijmachtools.2010.11.006 Rebro, 2004, Design of operating conditions for crackfree laser-assisted machining of mullite, Int. J. Mach. Tool Manufact., 44, 677, 10.1016/j.ijmachtools.2004.02.011 Zhao, 2010, Environmental assessment of laser assisted manufacturing: case studies on laser shock peening and laser assisted turning, J. Clean. Prod., 18, 1311, 10.1016/j.jclepro.2010.04.019 Chryssolouris, 1997, Laser assisted machining: an overview, Journal of Manufacturing Science and Engineering-Transactions of the Asme, 119, 766, 10.1115/1.2836822 Yang, 2008, Laser-Assisted Milling of silicon nitride ceramic, Int. J. Mechatron. Manuf. Syst., 1, 15 Tian, 2008, Laser-assisted milling of silicon nitride ceramics and inconel 718, J. Manuf. Sci. Eng., 130, 10.1115/1.2927447 Brecher, 2011, Laser-assisted milling of advanced materials, lasers in manufacturing 2011, Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, 12, 599 Pan, 2017, Heat affected zone in the laser-assisted milling of Inconel 718, J. Manuf. Process., 30, 141, 10.1016/j.jmapro.2017.09.021 Bermingham, 2015, Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V, Wear, 322, 151, 10.1016/j.wear.2014.11.001 Kim, 2013, Analysis of a laser assisted milling process with inclination angles, Int. J. Precis. Eng. Manuf., 14, 1495, 10.1007/s12541-013-0201-0 Singh, 2008, Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process, Int. J. Mach. Tool Manufact., 48, 994, 10.1016/j.ijmachtools.2008.01.004 Kang, 2014, A study on the development of the laser-assisted milling process and a related constitutive equation for silicon nitride, CIRP Ann. - Manuf. Technol., 63, 109, 10.1016/j.cirp.2014.03.087 Bermingham, 2014, Laser-assisted milling strategies with different cutting tool paths, Int. J. Adv. Manuf. Technol., 74, 1487, 10.1007/s00170-014-6093-z Kashani, 2017, Analytical solution of transient three-dimensional temperature field in a rotating cylinder subject to a localized laser beam, J. Heat Tran., 139, 10.1115/1.4035654 Roostaei, 2016, Analysis of heat transfer in laser assisted machining of slip cast fused silica ceramics, Procedia CIRP, 46, 571, 10.1016/j.procir.2016.04.068 Woo, 1999, Three-dimensional temperature distribution in laser surface hardening processes, Proc. IME B J. Eng. Manufact., 213, 695, 10.1243/0954405991517128 Van Elsen, 2007, Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing, Int. J. Heat Mass Tran., 50, 4872, 10.1016/j.ijheatmasstransfer.2007.02.044 Kubiak, 2015, Modelling of laser beam heat source based on experimental research of Yb:YAG laser power distribution, Int. J. Heat Mass Tran., 83, 679, 10.1016/j.ijheatmasstransfer.2014.12.052 Araya, 2006, Analytical solution for a transient, three-dimensional temperature distribution due to a moving laser beam, Int. J. Heat Mass Tran., 49, 4124, 10.1016/j.ijheatmasstransfer.2006.03.026 Kim, 2014, A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel, Int. J. Heat Mass Tran., 71, 264, 10.1016/j.ijheatmasstransfer.2013.12.021 Ding, 2012, Thermal and mechanical modeling analysis of laser-assisted micro-milling of difficult-to-machine alloys, J. Mater. Process. Technol., 212, 601, 10.1016/j.jmatprotec.2011.07.016 Cole, 2010 Special metals technical bulletin: Inconel 718, in, http://www.specialmetals.com/tech-center/alloys.html. Mignanelli, 2017, On the time-temperature-transformation behavior of a new dual-superlattice nickel-based superalloy, Metall. Mater. Trans., 1 Diaz-Alvarez, 2017, Temperature measurement and numerical prediction in machining inconel 718, Sensors, 17