Gallium‐Doped Silicon for High‐Efficiency Commercial Passivated Emitter and Rear Solar Cells

Solar RRL - Tập 5 Số 4 - 2021
Nicholas E. Grant1, Pietro P. Altermatt2, Tim Niewelt3,3, Regina Post3,3, Wolfram Kwapil3,3, Martin C. Schubert4, John D. Murphy1
1School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
2Trina Solar Limited, State Key Laboratory for PV Science and Technology (SKL), Changzhou, 213031 China
3Laboratory for Photovoltaic Energy Conversion, Department of Sustainable Systems Engineering (INATECH), University of Freiburg, Emmy-Noether-Str. 2, 79110, Freiburg, Germany
4Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstraße 2, 79110 Freiburg, Germany

Tóm tắt

Czochralski‐grown gallium‐doped silicon wafers are now a mainstream substrate for commercial passivated emitter and rear cell (PERC) devices and allow retention of established processes while offering enhanced cell stability. We have assessed the carrier lifetime potential of such Czochralski‐grown wafers in dependence of resistivity, finding effective lifetimes well into the millisecond region without any gettering or hydrogenation processing, thus demonstrating one advantage over boron‐doped silicon. Second, the stability of gallium‐doped PERC cells are monitored under illumination (>3000 h in some cases) and anomalous behavior is detected. While some cells are stable, others exhibit a degradation then recovery, reminiscent of light and elevated temperature‐induced degradation (LeTID) observed in other silicon materials. Surprisingly, cells from one ingot exhibit LeTID‐like behavior when annealed at 300 °C but near stability when not annealed, but, for another ingot, the opposite is observed. Moreover, a stabilization process typically used to mitigate boron–oxygen degradation does not influence any cells that are studied. Secondary‐ion mass spectrometry of the PERC cells reveals significant concentrations of unintentionally incorporated boron in some cases. Nevertheless, even in the absence of mitigating light‐induced degradation, Ga‐doped silicon is still more stable than unstabilized B‐doped silicon under illumination.

Từ khóa


Tài liệu tham khảo

10.1109/JPHOTOV.2016.2614119

10.1063/1.3517155

10.3390/app8010010

P. P.Altermatt Y.Yang Y.Chen X.Zhang D.Chen G.Xu Z.Feng 37th European Photovoltaic Solar Energy Conference 2020 p.1999 https://doi.org/10.4229/EUPVSEC20202020-7CP.1.2.

10.1002/(SICI)1099-159X(199911/12)7:6<463::AID-PIP293>3.0.CO;2-H

10.1002/pip.659

10.1063/1.1929096

10.1063/1.4766337

10.1063/1.5000358

10.1002/pssa.201800655

10.1063/1.5123817

10.1002/pssr.201307011

10.1016/j.solmat.2019.110299

10.1002/pip.3362

10.1063/1.4983024

10.1016/j.solmat.2015.06.015

10.1002/pssr.201409424

10.1002/pip.2832

10.1016/j.solmat.2017.08.003

10.1016/j.solmat.2018.05.034

10.1002/solr.202000214

W.Kwapil J.Dalke T.Niewelt M. C.Schubert 37th European Photovoltaic Solar Energy Conf. 2020 p.152 https://doi.org/10.4229/EUPVSEC20202020-2AO.5.3.

G.Fischer F.Wolny H.Neuhaus M.Müller 37th European Photovoltaic Solar Energy Conf. 2020 p.238 https://doi.org/10.4229/EUPVSEC20202020-2CO.13.2.

10.1002/pip.586

10.1002/pip.2731

10.1063/1.2240736

10.1103/PhysRevB.86.165202

10.1016/j.solmat.2018.07.029

S. K.Pang A.Rohatgi T. F.Ciszek Conf. Record of the Twentieth IEEE Photovoltaic Specialists Conf. IEEE Piscataway NJ1988 p.435 https://doi.org/10.1109/PVSC.1988.105738.

10.1149/1.2096590

A.Metz T.Abe R.Hezel 16th European Photovoltaic Solar Energy Conf. Glasgow UK2000 p.1189.

S. W.Glunz S.Rein J.Knobloch 16th European Photovoltaic Solar Energy Conf. Glasgow UK2000 p.1070.

G.Crabtree T. L.Jester C.Fredric J.Nickerson V.Meemongkolkiat A.Rohatgi 31st IEEE Photovoltaic Specialists Conf. IEEE Buena Vista FL USA2005 p.935 https://doi.org/10.1109/PVSC.2005.1488285.

B.Lim A.Merkle R.Peibst T.Dullweber Y.Wang R.Zhou 35th European Photovoltaic Solar Energy Conf. Brussels Belgium2018 p.359 https://doi.org/10.4229/35thEUPVSEC20182018-2BO.3.2.

10.1109/JPHOTOV.2018.2863548

10.1109/JPHOTOV.2019.2957642

10.1002/pssr.201700243

10.1016/j.solmat.2017.06.005

10.1002/pip.3172

10.1016/j.solmat.2018.03.028

10.1063/1.4804310

10.1063/1.4863674

10.1002/pssr.201600272

10.1002/solr.201800070

10.1109/JPHOTOV.2018.2874769

10.1002/pip.3240

10.1016/j.solener.2020.08.025

10.1016/j.solmat.2014.06.027

10.1039/D0NR03860A

10.1109/JPHOTOV.2019.2942484