Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom

Photoacoustics - Tập 17 - Trang 100157 - 2020
Jens Buchmann1,2, Bernhard Kaplan3, Samuel Powell4, Steffen Prohaska3, Jan Laufer1
1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Von-danckelmann-platz 3, 06120, Halle (Saale), Germany
2Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin, Germany
3Visual Data Analysis, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
4Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

Tài liệu tham khảo

Wang, 2012, Photoacoustic tomography: in vivo imaging from organelles to organs, Science, 335, 1458, 10.1126/science.1216210 Beard, 2011, Biomedical photoacoustic imaging, Interface Focus, 1, 602, 10.1098/rsfs.2011.0028 Cox, 2012, Quantitative spectroscopic photoacoustic imaging: a review, J. Biomed. Opt., 17, 0612021, 10.1117/1.JBO.17.6.061202 Lutzweiler, 2013, Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification, Sensors, 13, 7345, 10.3390/s130607345 Li, 2018, Photoacoustic tomography of blood oxygenation: a mini review, Photoacoustics, 10, 65, 10.1016/j.pacs.2018.05.001 Poudel, 2019, A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography, Phys. Med. Biol., 64, 14TR01, 10.1088/1361-6560/ab2017 Wang, 2006, Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, J. Biomed. Opt., 11, 24015, 10.1117/1.2192804 Razansky, 2009, Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo, Nat. Photon., 3, 412, 10.1038/nphoton.2009.98 Laufer, 2007, Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration, Phys. Med. Biol., 52, 141, 10.1088/0031-9155/52/1/010 Tzoumas, 2017, Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 375, 20170262, 10.1098/rsta.2017.0262 Hussain, 2016, Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics, Opt. Lett., 41, 1720, 10.1364/OL.41.001720 Hussain, 2018, Photoacoustic and acousto-optic tomography for quantitative and functional imaging, Optica, 5, 1579, 10.1364/OPTICA.5.001579 Bauer, 2011, Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography, J. Biomed. Opt., 16, 96016, 10.1117/1.3626212 Li, 2011, Integrated diffuse optical tomography and photoacoustic tomography: phantom validations, Biomed. Opt. Express, 2, 2348, 10.1364/BOE.2.002348 Ulrich, 2019, Spectral correction for handheld optoacoustic imaging by means of near-infrared optical tomography in reflection mode, J. Biophoton., 12, e201800112, 10.1002/jbio.201800112 Tzoumas, 2016, Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues, Nat. Commun., 7, 12121, 10.1038/ncomms12121 Kirchner, 2018, Context encoding enables machine learning-based quantitative photoacoustics, J. Biomed. Opt., 23, 56008, 10.1117/1.JBO.23.5.056008 Laufer, 2010, Quantitative determination of chromophore concentrations from 2d photoacoustic images using a nonlinear model-based inversion scheme, Appl. Opt., 49, 1219, 10.1364/AO.49.001219 Sun, 2009, Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study, J. Biomed. Opt., 14, 64002, 10.1117/1.3257246 Sun, 2013, Noninvasive imaging of hemoglobin concentration and oxygen saturation for detection of osteoarthritis in the finger joints using multispectral three-dimensional quantitative photoacoustic tomography, J. Opt., 15, 55302, 10.1088/2040-8978/15/5/055302 Brochu, 2016, Towards quantitative evaluation of tissue absorption coefficients using light fluence correction in optoacoustic tomography, IEEE Trans. Med. Imaging, 36, 322, 10.1109/TMI.2016.2607199 Dima, 2014, Multispectral optoacoustic tomography at 64, 128, and 256 channels, J. Biomed. Opt., 19, 36021, 10.1117/1.JBO.19.3.036021 Cox, 2007, Gradient-based quantitative photoacoustic image reconstruction for molecular imaging, Photons Plus Ultrasound: Imaging and Sensing 2007, Vol. 6437, 64371T Fonseca, 2017, Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions, Photons Plus Ultrasound: Imaging and Sensing 2017, Vol. 10064, 1006415 Fonseca, 2017 Buchmann, 2019, Three-dimensional quantitative photoacoustic tomography using an adjoint radiance monte Carlo model and gradient descent, J. Biomed. Opt., 66001, 1, 10.1117/1.JBO.24.6.066001 Zhang, 2008, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Pérot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues, Appl. Opt., 47, 561, 10.1364/AO.47.000561 Buchmann, 2016, Evaluation of Fabry–Pérot polymer film sensors made using hard dielectric mirror deposition, SPIE BiOS, 970856 Kingma, 2014 Laufer, 2010, Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging, IEEE J. Sel. Top. Quant. Electron., 16, 600, 10.1109/JSTQE.2009.2032513 Fonseca, 2017, Sulfates as chromophores for multiwavelength photoacoustic imaging phantoms, J. Biomed. Opt., 22, 125007 Yao, 2014, Photoacoustic measurement of the Grüneisen parameter of tissue, J. Biomed. Opt., 19, 17007, 10.1117/1.JBO.19.1.017007 Hochuli, 2016, Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance, J. Biomed. Opt., 21, 126004, 10.1117/1.JBO.21.12.126004 Powell, 2017, Radiance Monte-Carlo for application of the radiative transport equation in the inverse problem of diffuse optical tomography, Optical Tomography and Spectroscopy of Tissue XII, Vol. 10059, 100590W Buchmann, 2017, Characterization and modeling of Fabry–Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging, Appl. Opt., 56, 5039, 10.1364/AO.56.005039 Guggenheim, 2017, A method for measuring the directional response of ultrasound receivers in the range 0.3–80 MHz using a laser-generated ultrasound source, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 1857, 10.1109/TUFFC.2017.2758173 Treeby, 2010, k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15, 21314, 10.1117/1.3360308 Treeby, 2011, Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach, J. Biomed. Opt., 16, 90501, 10.1117/1.3619139 Grosenick, 1997, Time-resolved imaging of solid phantoms for optical mammography, Appl. Opt., 36, 221, 10.1364/AO.36.000221 Haynes, 2014 Xu, 2004, Reconstructions in limited-view thermoacoustic tomography, Med. Phys., 31, 724, 10.1118/1.1644531 Rosenthal, 2013, Acoustic inversion in optoacoustic tomography: a review, Curr. Med. Imaging Rev., 9, 318, 10.2174/15734056113096660006 Kaplan, 2017, Monte-Carlo-based inversion scheme for 3D quantitative photoacoustic tomography, Photons Plus Ultrasound: Imaging and Sensing 2017, Vol. 10064, 100645J Cox, 2009, Estimating chromophore distributions from multiwavelength photoacoustic images, JOSA A, 26, 443, 10.1364/JOSAA.26.000443