Solution and Crystal Molecular Dynamics Simulation Study of m4-Cyanovirin-N Mutants Complexed with Di-Mannose
Tài liệu tham khảo
Boyd, 1997, Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development, Antimicrob. Agents Chemother., 41, 1521, 10.1128/AAC.41.7.1521
Barrientos, 2003, Cyanovirin-N binds to the viral surface glycoprotein, GP1,2 and inhibits infectivity of Ebola virus, Antiviral Res., 58, 47, 10.1016/S0166-3542(02)00183-3
Barrientos, 2004, In vitro evaluation of cyanovirin-N antiviral activity, by use of lentiviral vectors pseudotyped with filovirus envelope glycoproteins, J. Infect. Dis., 189, 1440, 10.1086/382658
Helle, 2006, Cyanovirin-N inhibits hepatitis C virus entry by binding to envelope protein glycans, J. Biol. Chem., 281, 25177, 10.1074/jbc.M602431200
Shan, 2007, HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells, PLoS Pathog., 3, e169, 10.1371/journal.ppat.0030169
Tsai, 2004, Cyanovirin-N inhibits AIDS virus infections in vaginal transmission models, AIDS Res. Hum. Retroviruses, 20, 11, 10.1089/088922204322749459
Tsai, 2003, Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques, AIDS Res. Hum. Retroviruses, 19, 535, 10.1089/088922203322230897
Hu, 2007, High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization, Virology, 368, 145, 10.1016/j.virol.2007.06.029
Sandstrom, 2008, Atomic mapping of the sugar interactions in one-site and two-site mutants of cyanovirin-N by NMR spectroscopy, Biochemistry, 47, 3625, 10.1021/bi702200m
Bewley, 2001, Solution structure of a cyanovirin-N:Man α1–2Manα complex: structural basis for high-affinity carbohydrate-mediated binding to gp120, Structure, 9, 931, 10.1016/S0969-2126(01)00653-0
Barrientos, 2006, Dissecting carbohydrate-Cyanovirin-N binding by structure-guided mutagenesis: functional implications for viral entry inhibition, Protein Eng. Des. Sel., 19, 525, 10.1093/protein/gzl040
Botos, 2002, Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides, J. Biol. Chem., 277, 34336, 10.1074/jbc.M205909200
Botos, 2002, Domain-swapped structure of a mutant of cyanovirin-N, Biochem. Biophys. Res. Commun., 294, 184, 10.1016/S0006-291X(02)00455-2
Ziolkowska, 2006, Structural studies of algal lectins with anti-HIV activity, Acta Biochim. Pol., 53, 617, 10.18388/abp.2006_3290
Fujimoto, 2008, Computational models explain the oligosaccharide specificity of cyanovirin-N, Protein Sci., 17, 2008, 10.1110/ps.034637.108
Margulis, 2005, Computational study of the dynamics of mannose disaccharides free in solution and bound to the potent anti-HIV virucidal protein cyanovirin, J. Phys. Chem. B, 109, 3639, 10.1021/jp0406971
Chang, 2002, Potent inhibition of HIV-1 fusion by cyanovirin-N requires only a single high affinity carbohydrate binding site: characterization of low affinity carbohydrate binding site knockout mutants, J. Mol. Biol., 318, 1, 10.1016/S0022-2836(02)00045-1
Fromme, 2007, A monovalent mutant of cyanovirin-N provides insight into the role of multiple interactions with gp120 for antiviral activity, Biochemistry, 46, 9199, 10.1021/bi700666m
Barrientos, 2004, Flipping the switch from monomeric to dimeric CV-N has little effect on antiviral activity, Structure, 12, 1799, 10.1016/j.str.2004.07.019
Mori, 2002, Functional homologs of cyanovirin-N amenable to mass production in prokaryotic and eukaryotic hosts, Protein Expr. Purif., 26, 42, 10.1016/S1046-5928(02)00513-2
Liu, 2009, Multivalent interactions with gp120 are required for the anti-HIV activity of cyanovirin, Biopolymers, 92, 194, 10.1002/bip.21173
Fromme, 2008, Conformational gating of dimannose binding to the antiviral protein cyanovirin revealed from the crystal structure at 1.35 A resolution, Protein Sci., 17, 939, 10.1110/ps.083472808
Anselmi, 2008, Molecular dynamics simulation of the neuroglobin crystal: comparison with the simulation in solution, Biophys. J., 95, 4157, 10.1529/biophysj.108.135855
Neugebauer, 2004, Protein-dynamics of the putative HCV receptor CD81 large extracellular loop, Bioorg. Med. Chem. Lett., 14, 1765, 10.1016/j.bmcl.2004.01.036
Cerutti, 2008, Simulations of a protein crystal: explicit treatment of crystallization conditions links theory and experiment in the streptavidin-biotin complex, Biochemistry, 47, 12065, 10.1021/bi800894u
Malek, 2008, Molecular simulations of solute transport in xylose isomerase crystals, J. Phys. Chem. B, 112, 1549, 10.1021/jp069047i
Hu, 2008, Molecular dynamics simulations for water and ions in protein crystals, Langmuir, 24, 4215, 10.1021/la703591e
Bond, 2006, Membrane protein dynamics and detergent interactions within a crystal: a simulation study of OmpA, Proc. Natl. Acad. Sci. USA, 103, 9518, 10.1073/pnas.0600398103
Meinhold, 2005, Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of staphylococcal nuclease, Biophys J., 88, 2554, 10.1529/biophysj.104.056101
Krieger, 2004, Making optimal use of empirical energy functions: Force-field parameterization in crystal space, Proteins, 57, 678, 10.1002/prot.20251
Baucom, 2004, Molecular dynamics simulations of the d(CCAACGTTGG)2 decamer in crystal environment: comparison of atomic point-charge, extra-point, and polarizable force fields, J. Chem. Phys., 121, 6998, 10.1063/1.1788631
Babin, 2006, Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure, J. Phys. Chem. B, 110, 11571, 10.1021/jp061421r
Shao, 2007, Clustering molecular dynamics trajectories: 1. characterizing the performance of different clustering algorithms, J. Chem. Theory Comput., 3, 2312, 10.1021/ct700119m
Rao, 2004, The protein folding network, J. Mol. Biol., 342, 299, 10.1016/j.jmb.2004.06.063
Case, 2005, The AMBER biomolecular simulation programs, J. Comput. Chem., 26, 1668, 10.1002/jcc.20290
Case, 2008
Case, D.A., editor. 2008. AmberTools Users' Manual.
Duan, 2003, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, J. Comput. Chem., 24, 1999, 10.1002/jcc.10349
Kirschner, 2008, GLYCAM06: a generalizable biomolecular force field. Carbohydrates, J. Comput. Chem., 29, 622, 10.1002/jcc.20820
Ponder, 2003, Force fields for protein simulations, Adv. Protein Chem., 66, 27, 10.1016/S0065-3233(03)66002-X
DeMarco, 2004, 2008. Structural glycobiology: a game of snakes and ladders, Glycobiology, 18, 426, 10.1093/glycob/cwn026
Cerutti, 2008, Vulnerability in popular molecular dynamics packages concerning Langevin and Andersen dynamics, J. Chem. Theory Comput., 4, 1669, 10.1021/ct8002173
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5
DeLano, 2008
Wallace, 1995, LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng., 8, 127, 10.1093/protein/8.2.127
Shannon, 2003, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498, 10.1101/gr.1239303
Lovell, 2000, The penultimate rotamer library, Proteins, 40, 389, 10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
Vorontsov, 2005, On the refinement of time-resolved diffraction data: comparison of the random-distribution and cluster-formation models and analysis of the light-induced increase in the atomic displacement parameters, J. Synchrotron. Radiat., 12, 488, 10.1107/S0909049505014561
Percudani, 2005, The anti-HIV cyanovirin-N domain is evolutionarily conserved and occurs as a protein module in eukaryotes, Proteins, 60, 670, 10.1002/prot.20543
Koharudin, 2008, The evolutionarily conserved family of cyanovirin-N homologs: structures and carbohydrate specificity, Structure, 16, 570, 10.1016/j.str.2008.01.015