Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates

Joana Damas1, Graham M. Hughes2, Kathleen C. Keough3,4, Corrie Painter5, Nicole S. Persky6, Marco Corbo1, Michael Hiller7,8,9, Klaus‐Peter Koepfli10, Andreas R. Pfenning11, Huabin Zhao12,13, Diane P. Genereux14, Ross Swofford14, Katherine S. Pollard15,16,3, Oliver A. Ryder17,18, Martin Nweeia19,20,21, Kerstin Lindblad‐Toh14,22, Emma C. Teeling2, Elinor K. Karlsson23,14,24, Harris A. Lewin25,26,1
1The Genome Center, University of California, Davis, CA 95616;
2School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
3Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158;
4Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, Quantitative Biosciences Consortium, University of California, San Francisco, CA 94117;
5Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
6Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142;
7Center for Systems Biology Dresden, 01307 Dresden, Germany
8Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
9Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
10Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630;
11Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213;
12College of Science, Tibet University, Lhasa 850000, China
13Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China;
14Broad Institute of MIT and Harvard, Cambridge, MA 02142
15Chan Zuckerberg Biohub, San Francisco, CA 94158
16Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94158;
17Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093;
18San Diego Zoo Institute for Conservation Research, Escondido, CA 92027;
19Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115;
20Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002;
21School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106;
22Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
23Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655;
24Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655;
25Department of Evolution and Ecology, University of California, Davis, CA 95616;
26John Muir Institute for the Environment, University of California, Davis, CA 95616

Tóm tắt

Significance

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19, a major pandemic that threatens millions of human lives and the global economy. We identified a large number of mammals that can potentially be infected by SARS-CoV-2 via their ACE2 proteins. This can assist the identification of intermediate hosts for SARS-CoV-2 and hence reduce the opportunity for a future outbreak of COVID-19. Among the species we found with the highest risk for SARS-CoV-2 infection are wildlife and endangered species. These species represent an opportunity for spillover of SARS-CoV-2 from humans to other susceptible animals. Given the limited infectivity data for the species studied, we urge caution not to overinterpret the predictions of the present study.

Từ khóa


Tài liệu tham khảo

10.1038/s41586-020-2012-7

10.1016/j.tim.2015.06.003

10.1038/s41422-020-0364-z

H. Laude, K. Van Reeth, M. Pensaert, Porcine respiratory coronavirus: Molecular features and virus-host interactions. Vet. Res. 24, 125–150 (1993).

10.1016/j.cvfa.2010.04.005

10.1128/JVI.79.3.1595-1604.2005

10.1038/s41586-020-2169-0

United States Department of Agriculture Animal and Plant Health Inspection Service USDA statement on the confirmation of COVID-19 in a tiger in New York. https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19. Accessed 13 April 2020.

10.3201/eid1103.040824

10.1016/j.molmed.2020.02.008

10.1038/nature02145

10.1038/s41586-020-2180-5

10.1161/CIRCRESAHA.116.307708

10.1161/CIRCRESAHA.107.169110

10.1038/nature12005

10.1038/s41586-020-2308-7

E. W. Stawiski . Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv:10.1101/2020.04.07.024752 (13 April 2020).

10.1016/j.antiviral.2013.08.014

10.1126/science.1116480

10.1038/s41586-020-2179-y

10.1016/j.cub.2020.03.022

10.1002/jmv.25726

10.1002/jmv.25832

10.1038/s41421-020-0147-1

10.1038/s41431-020-0691-z

10.1016/j.bbrc.2020.05.028

10.1126/science.abc0870

10.1093/ve/vex012

10.1016/S1050-1738(02)00233-5

10.1038/s41586-020-2486-3

10.1146/annurev-animal-090414-014900

10.1016/j.meegid.2019.04.016

10.1128/JVI.01408-15

10.1016/j.jmb.2018.06.024

10.1038/s41564-020-0688-y

10.3390/v12050497

10.1016/j.bbrc.2020.03.047

A. D. Melin M. C. Janiak F. Marrone P. S. Arora J. P. Higham Comparative ACE2 variation and primate COVID-19 risk. bioRxiv:10.1101/2020.04.09.034967 (12 April 2020).

10.1016/j.micinf.2020.03.003

10.1128/JVI.00127-20

10.1128/JVI.00311-12

10.1128/JVI.00411-20

V. J. Munster . Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2. bioRxiv:10.1101/2020.03.21.001628 (12 April 2020).

10.1126/science.abb7314

10.1126/science.abb7015

10.1056/NEJMc2013400

10.1093/cid/ciaa325

10.1038/s41586-020-2334-5

10.1016/S2666-5247(20)30089-6

10.1016/j.chom.2020.03.023

10.1038/s41467-020-17367-2

10.1016/j.virol.2015.03.017

10.1038/425915a

10.1016/j.virol.2005.06.026

10.1016/j.cell.2020.02.058

10.1128/JVI.01586-08

10.1128/JVI.02722-07

10.1016/B978-0-12-801573-5.00020-6

10.1128/JVI.02351-13

10.1016/j.cell.2020.02.052

10.3389/fimmu.2020.00026

10.3201/eid2606.200516

10.1371/journal.pone.0072942

10.1038/357417a0

Y. Li . Potential host range of multiple SARS-like coronaviruses and an improved ACE2-Fc variant that is potent against both SARS-CoV-2 and SARS-CoV-1. bioRxiv:10.1101/2020.04.10.032342 (18 May 2020).

S. Temmam A. Barbarino D. Maso S. Behillil V. Enouf Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. bioRxiv:10.1101/2020.04.07.029090 (9 April 2020).

10.1038/s41586-020-2313-x

10.1002/jmv.25731

10.3389/fimmu.2019.02329

IUCN The IUCN Red List of Threatened Species Version 2019-2. https://www.iucnredlist.org/. Accessed 13 April 2020.

10.1073/pnas.1501844112

10.1007/0-387-23709-7_5

C. Copeland “Cruise ship pollution: background laws and regulations and key issues” (Tech. Rep. RL32450 Congressional Research Service The Library of Congress 2005).

10.2305/IUCN.CH.2015.SSC-OP.56.en

10.1126/sciadv.1600946

10.1038/d41586-020-00859-y

J. Johnson A. Moresco S. Han SARS-COV-2 considerations and precautions. https://zahp.aza.org/wp-content/uploads/2020/04/AZA-Small-Carnivore-TAG-SARS-CoV-Statement_8Apr2020.pdf. Accessed 8 April 2020.

A. Lecu, M. Bertelsen, C. Walzer; EAZWV Infectious Diseases Working Group, “Science-based facts & knowledge about wild animals, zoos, and SARS-CoV-2 virus” in Transmissible Diseases Handbook, (European Association of Zoo and Wildlife Veterinarians, 2020).

10.1093/nar/gkv1290

10.1093/nar/gki458

10.1093/bioinformatics/btx527

10.1007/978-1-62703-646-7_6

10.1093/nar/gkh340

10.1093/bioinformatics/btm076

10.1002/jcc.20084

10.1016/j.str.2011.03.019

10.1093/nar/gky427

10.1126/science.abb2762

PyMOL The PyMOL molecular graphics system (Version 2.0 Schrödinger LLC 2020).

10.1093/nar/29.1.308

10.1038/nature15393

NHLBI Trans-omics for precision medicine: About TOPMed. https://www.nhlbiwgs.org/. Accessed 14 April 2020.

10.1038/nature14962

10.1093/molbev/msaa015

10.1038/nmeth.4285

10.1093/molbev/msx281

10.1093/molbev/msm088

10.1093/nar/gkl315

10.1101/gr.097857.109

10.1093/bib/bbq072

10.1093/bioinformatics/bty966

10.1093/nar/gky1069