Review of convective heat transfer enhancement with nanofluids

International Journal of Heat and Mass Transfer - Tập 52 - Trang 3187-3196 - 2009
Sadik Kakaç1, Anchasa Pramuanjaroenkij2
1TOBB University of Economics and Technology, Söğütözü Cad. No: 43, 06530 Ankara, Turkey
2Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand

Tài liệu tham khảo

J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhancement thermal conductivity through the development of nanofluids, in: 1996 Fall meeting of the Materials Research Society (MRS), Boston, USA, 1997. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99–105. Choi, 2001, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272 H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alterlation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei 7 (1993) 227–233. Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, Trans. ASME, J. Heat Transfer, 121, 280, 10.1115/1.2825978 Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3 Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5 Granquist, 1976, Ultrafine metal particles, J. Appl. Phys., 47, 2200, 10.1063/1.322870 Yu, 2007 Maxwell, 1904 Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1, 182, 10.1021/i160003a005 Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801 Schwartz, 1995, Interfacial transport in porous media: application to DC electrical conductivity of mortars, J. Appl. Phys., 78, 5898, 10.1063/1.360591 Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486 Das, 2003, Temperature dependence of thermal conductivity enhancement of nanofluids, Trans. ASME, J. Heat Transfer, 125, 567, 10.1115/1.1571080 Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, 46, 851, 10.1016/S0017-9310(02)00348-4 Das, 2003, Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 1237, 10.1016/S0301-9322(03)00105-8 Xie, 2002, Thermal conductivity of suspensions containing nanosized SiC particles, Int. J. Thermophys., 23, 571, 10.1023/A:1015121805842 Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184 Xie, 2002, Dependence of the thermal conductivity of nanoparticles-fluid mixture on the base fluid, J. Mater. Sci. Lett., 21, 1469, 10.1023/A:1020060324472 Wen, 2004, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47, 5181, 10.1016/j.ijheatmasstransfer.2004.07.012 Wen, 2004, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophys. Heat Transfer, 18, 481, 10.2514/1.9934 Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314, 10.1063/1.2191571 Eastman, 2001, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218 Heris, 2006, Experimental investigation of oxide nanofluids laminar flow convection heat transfer, Int. Comm. Heat Mass Transfer, 33, 529, 10.1016/j.icheatmasstransfer.2006.01.005 Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559 Xuan, 2002, Investigation convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151, 10.1115/1.1532008 Yang, 2005, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48, 1107, 10.1016/j.ijheatmasstransfer.2004.09.038 Ding, 2006, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240, 10.1016/j.ijheatmasstransfer.2005.07.009 Ma, 2006, Effect of nanofluid on the heat transport capability in an oscillatory heat pipe, Appl. Phys. Lett., 88, 143116, 10.1063/1.2192971 Chen, 2008, Heat trasnfer behaviour of aqueous suspensions of titanate nanofluids, Powder Technol., 183, 63, 10.1016/j.powtec.2007.11.014 Kulkarni, 2008, Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid, Heat Transfer Eng., 29, 1027, 10.1080/01457630802243055 Bhattacharya, 2004, Brownian dynamics simulation to determine the effect thermal conductivity of nanofluids, J. Appl. Phys., 95, 6492, 10.1063/1.1736319 Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016 Pozhar, 2000, Structure and dynamics of nanofluids: theory and simulations to calculate viscosity, Phys. Rev. E, 61, 1432, 10.1103/PhysRevE.61.1432 Gupte, 1995, Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension, Int. J. Heat Mass Transfer, 38, 2945, 10.1016/0017-9310(95)00060-M Sato, 1998, Direct numerical simulations of heat transfer by solid particles suspended in homogeneous isotropic turbulence, Int. J. Heat Fluid Flow, 19, 187, 10.1016/S0142-727X(97)10023-6 Ali, 2003, Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions, Int. J. Energy Res., 27, 725, 10.1002/er.908 Khanafer, 2003, Bouyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639, 10.1016/S0017-9310(03)00156-X Ali, 2004, Analysis of heat and mass transfer between air and falling film in a cross flow configuration, Int. J. Heat Mass Transfer, 47, 743, 10.1016/j.ijheatmasstransfer.2003.07.017 Gosselin, 2004, Combined heat transfer and power dissipation opimization of nanofluid flows, Appl. Phys. Lett., 85, 4160, 10.1063/1.1813642 Kim, 2004, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 16, 2395, 10.1063/1.1739247 Maïga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012 Roy, 2004, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011 Shenogin, 2004, Role of thermal boundary resistance on the heat flow in carbon-nanotube composited, J. Appl. Phys., 95, 8136, 10.1063/1.1736328 Ding, 2005, Particle migration in a flow of nanoparticle suspensions, Powder Technol., 149, 84, 10.1016/j.powtec.2004.11.012 Khaled, 2005, Heat transfer enhancement through control of thermal dispersion effects, Int. J. Heat Mass Transfer, 48, 2172, 10.1016/j.ijheatmasstransfer.2004.12.035 Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029 Kumar, 2005, A numerical technique for computing effective thermal conductivity of fluid–particle mixtures (Part B), Num. Heat Transfer, 47, 555, 10.1080/10407790590928937 Maïga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004 Wen, 2005, Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels, Microfluid Nanofluid, 1, 183, 10.1007/s10404-004-0027-2 Wen, 2005, Experimental investigation into pool boiling heat transfer of aqueous based γ-alumina nanofluids, J. Nanoparticle Res., 7, 265, 10.1007/s11051-005-3478-9 Wen, 2005, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow, 26, 855, 10.1016/j.ijheatfluidflow.2005.10.005 Xuan, 2005, Lattice boltzmann model for nanofluids, Heat Mass Transfer, 41, 199 Evans, 2006, Role of brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118 Jou, 2006, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. Comm. Heat Mass Transfer, 33, 727, 10.1016/j.icheatmasstransfer.2006.02.016 Keblinski, 2006, Hydrodynamic field around a brownian particle, Phys. Rev. E, 73, 010502, 10.1103/PhysRevE.73.010502 Kim, 2006, Effect of thermodiffusion nanoparticles on convective instability in binary nanofluids, Nanoscale Microscale Thermophys. Eng., 10, 29, 10.1080/10893950500357772 Mansour, 2006, Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids, Appl. Thermal Eng., 27, 240, 10.1016/j.applthermaleng.2006.04.011 Prasher, 2006, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 89, 143119, 10.1063/1.2360229 Drew, 1999 Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493 Kakaç, 1995 Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew. Sustain. Energy Rev., 11, 512, 10.1016/j.rser.2005.01.010 Eastman, 2004, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621 J. Eapen, J. Li, S. Yip, Probing transport mechanisms in nanofluids by molecular dynamics simulations, in: Proceeding of the 18th National and 7th ISHMT–ASME Heat and Mass Transfer Conference, IIT Guwahati, India, 2006. J. Buongiorno, A non-homogeneous equilibrium model for convective transport in flowing nanofluids, in: The Proceedings of HT2005, San Francisco, CA, 2005. Wang, 2006, Heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010 Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev., 11, 797, 10.1016/j.rser.2005.06.005 Palm, 2004, Heat transfer enhancement with the use of nanofluids in radial flow cooling system with the use of nanofluids, Superlattices Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011 Maïga, 2006, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, Int. J. Num. Methods Heat Fluid Flow, 16, 275, 10.1108/09615530610649717 Launder, 1972 Akbari, 2007, Developing mixed convection of a nanofluid in a horizontal tube with uniform heat flux, Int. J. Num. Methods Heat Fluid Flow, 17, 566, 10.1108/09615530710761216 Mirmasoumi, 2008, Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. Thermal Eng., 28, 717, 10.1016/j.applthermaleng.2007.06.019 Heris, 2007, Numerical investigation of nanofluid laminar convection heat transfer through a circular tube, Num. Heat Transfer A, 52, 1043, 10.1080/10407780701364411 Behzadmehr, 2007, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow, 28, 211, 10.1016/j.ijheatfluidflow.2006.04.006 Manninen, 1996 Schiller, 1935, Coefficeint correlation, Z. Ver. Deutsch Ing., 77, 318 Miller, 1992, Dense vertical gas–solid flow in a pipe, AIChE J., 38, 1801, 10.1002/aic.690381111 Mirmasoumi, 2008, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow, 29, 557, 10.1016/j.ijheatfluidflow.2007.11.007