Review of convective heat transfer enhancement with nanofluids
Tài liệu tham khảo
J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhancement thermal conductivity through the development of nanofluids, in: 1996 Fall meeting of the Materials Research Society (MRS), Boston, USA, 1997.
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99–105.
Choi, 2001, Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272
H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alterlation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei 7 (1993) 227–233.
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, Trans. ASME, J. Heat Transfer, 121, 280, 10.1115/1.2825978
Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
Granquist, 1976, Ultrafine metal particles, J. Appl. Phys., 47, 2200, 10.1063/1.322870
Yu, 2007
Maxwell, 1904
Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1, 182, 10.1021/i160003a005
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801
Schwartz, 1995, Interfacial transport in porous media: application to DC electrical conductivity of mortars, J. Appl. Phys., 78, 5898, 10.1063/1.360591
Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Das, 2003, Temperature dependence of thermal conductivity enhancement of nanofluids, Trans. ASME, J. Heat Transfer, 125, 567, 10.1115/1.1571080
Das, 2003, Pool boiling characteristics of nano-fluids, Int. J. Heat Mass Transfer, 46, 851, 10.1016/S0017-9310(02)00348-4
Das, 2003, Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase Flow, 29, 1237, 10.1016/S0301-9322(03)00105-8
Xie, 2002, Thermal conductivity of suspensions containing nanosized SiC particles, Int. J. Thermophys., 23, 571, 10.1023/A:1015121805842
Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184
Xie, 2002, Dependence of the thermal conductivity of nanoparticles-fluid mixture on the base fluid, J. Mater. Sci. Lett., 21, 1469, 10.1023/A:1020060324472
Wen, 2004, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47, 5181, 10.1016/j.ijheatmasstransfer.2004.07.012
Wen, 2004, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. Thermophys. Heat Transfer, 18, 481, 10.2514/1.9934
Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys., 99, 084314, 10.1063/1.2191571
Eastman, 2001, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Heris, 2006, Experimental investigation of oxide nanofluids laminar flow convection heat transfer, Int. Comm. Heat Mass Transfer, 33, 529, 10.1016/j.icheatmasstransfer.2006.01.005
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559
Xuan, 2002, Investigation convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151, 10.1115/1.1532008
Yang, 2005, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48, 1107, 10.1016/j.ijheatmasstransfer.2004.09.038
Ding, 2006, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240, 10.1016/j.ijheatmasstransfer.2005.07.009
Ma, 2006, Effect of nanofluid on the heat transport capability in an oscillatory heat pipe, Appl. Phys. Lett., 88, 143116, 10.1063/1.2192971
Chen, 2008, Heat trasnfer behaviour of aqueous suspensions of titanate nanofluids, Powder Technol., 183, 63, 10.1016/j.powtec.2007.11.014
Kulkarni, 2008, Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid, Heat Transfer Eng., 29, 1027, 10.1080/01457630802243055
Bhattacharya, 2004, Brownian dynamics simulation to determine the effect thermal conductivity of nanofluids, J. Appl. Phys., 95, 6492, 10.1063/1.1736319
Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016
Pozhar, 2000, Structure and dynamics of nanofluids: theory and simulations to calculate viscosity, Phys. Rev. E, 61, 1432, 10.1103/PhysRevE.61.1432
Gupte, 1995, Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension, Int. J. Heat Mass Transfer, 38, 2945, 10.1016/0017-9310(95)00060-M
Sato, 1998, Direct numerical simulations of heat transfer by solid particles suspended in homogeneous isotropic turbulence, Int. J. Heat Fluid Flow, 19, 187, 10.1016/S0142-727X(97)10023-6
Ali, 2003, Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions, Int. J. Energy Res., 27, 725, 10.1002/er.908
Khanafer, 2003, Bouyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer, 46, 3639, 10.1016/S0017-9310(03)00156-X
Ali, 2004, Analysis of heat and mass transfer between air and falling film in a cross flow configuration, Int. J. Heat Mass Transfer, 47, 743, 10.1016/j.ijheatmasstransfer.2003.07.017
Gosselin, 2004, Combined heat transfer and power dissipation opimization of nanofluid flows, Appl. Phys. Lett., 85, 4160, 10.1063/1.1813642
Kim, 2004, Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. Fluids, 16, 2395, 10.1063/1.1739247
Maïga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012
Roy, 2004, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011
Shenogin, 2004, Role of thermal boundary resistance on the heat flow in carbon-nanotube composited, J. Appl. Phys., 95, 8136, 10.1063/1.1736328
Ding, 2005, Particle migration in a flow of nanoparticle suspensions, Powder Technol., 149, 84, 10.1016/j.powtec.2004.11.012
Khaled, 2005, Heat transfer enhancement through control of thermal dispersion effects, Int. J. Heat Mass Transfer, 48, 2172, 10.1016/j.ijheatmasstransfer.2004.12.035
Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029
Kumar, 2005, A numerical technique for computing effective thermal conductivity of fluid–particle mixtures (Part B), Num. Heat Transfer, 47, 555, 10.1080/10407790590928937
Maïga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004
Wen, 2005, Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels, Microfluid Nanofluid, 1, 183, 10.1007/s10404-004-0027-2
Wen, 2005, Experimental investigation into pool boiling heat transfer of aqueous based γ-alumina nanofluids, J. Nanoparticle Res., 7, 265, 10.1007/s11051-005-3478-9
Wen, 2005, Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat Fluid Flow, 26, 855, 10.1016/j.ijheatfluidflow.2005.10.005
Xuan, 2005, Lattice boltzmann model for nanofluids, Heat Mass Transfer, 41, 199
Evans, 2006, Role of brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118
Jou, 2006, Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. Comm. Heat Mass Transfer, 33, 727, 10.1016/j.icheatmasstransfer.2006.02.016
Keblinski, 2006, Hydrodynamic field around a brownian particle, Phys. Rev. E, 73, 010502, 10.1103/PhysRevE.73.010502
Kim, 2006, Effect of thermodiffusion nanoparticles on convective instability in binary nanofluids, Nanoscale Microscale Thermophys. Eng., 10, 29, 10.1080/10893950500357772
Mansour, 2006, Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids, Appl. Thermal Eng., 27, 240, 10.1016/j.applthermaleng.2006.04.011
Prasher, 2006, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett., 89, 143119, 10.1063/1.2360229
Drew, 1999
Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Kakaç, 1995
Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew. Sustain. Energy Rev., 11, 512, 10.1016/j.rser.2005.01.010
Eastman, 2004, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621
J. Eapen, J. Li, S. Yip, Probing transport mechanisms in nanofluids by molecular dynamics simulations, in: Proceeding of the 18th National and 7th ISHMT–ASME Heat and Mass Transfer Conference, IIT Guwahati, India, 2006.
J. Buongiorno, A non-homogeneous equilibrium model for convective transport in flowing nanofluids, in: The Proceedings of HT2005, San Francisco, CA, 2005.
Wang, 2006, Heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010
Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev., 11, 797, 10.1016/j.rser.2005.06.005
Palm, 2004, Heat transfer enhancement with the use of nanofluids in radial flow cooling system with the use of nanofluids, Superlattices Microstruct., 35, 497, 10.1016/j.spmi.2003.09.011
Maïga, 2006, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, Int. J. Num. Methods Heat Fluid Flow, 16, 275, 10.1108/09615530610649717
Launder, 1972
Akbari, 2007, Developing mixed convection of a nanofluid in a horizontal tube with uniform heat flux, Int. J. Num. Methods Heat Fluid Flow, 17, 566, 10.1108/09615530710761216
Mirmasoumi, 2008, Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. Thermal Eng., 28, 717, 10.1016/j.applthermaleng.2007.06.019
Heris, 2007, Numerical investigation of nanofluid laminar convection heat transfer through a circular tube, Num. Heat Transfer A, 52, 1043, 10.1080/10407780701364411
Behzadmehr, 2007, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat Fluid Flow, 28, 211, 10.1016/j.ijheatfluidflow.2006.04.006
Manninen, 1996
Schiller, 1935, Coefficeint correlation, Z. Ver. Deutsch Ing., 77, 318
Miller, 1992, Dense vertical gas–solid flow in a pipe, AIChE J., 38, 1801, 10.1002/aic.690381111
Mirmasoumi, 2008, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow, 29, 557, 10.1016/j.ijheatfluidflow.2007.11.007