Mitochondrial ROS regulation of proliferating cells
Tài liệu tham khảo
Glasauer, 2013, ROS Curr. Biol., 23, R100, 10.1016/j.cub.2012.12.011
Weinberg, 2009, Reactive oxygen species-dependent signaling regulates cancer, Cell. Mol. Life Sci., 66, 3663, 10.1007/s00018-009-0099-y
Cross, 1987, Oxygen radicals and human disease, Ann. Intern. Med., 107, 526, 10.7326/0003-4819-107-4-526
Rhee, 2006, Cell signaling. H2O2, a necessary evil for cell signaling, Science, 312, 1882, 10.1126/science.1130481
Murphy, 2009, How mitochondria produce reactive oxygen species, Biochem. J., 417, 1, 10.1042/BJ20081386
Sena, 2012, Physiological roles of mitochondrial reactive oxygen species, Mol. Cell, 48, 158, 10.1016/j.molcel.2012.09.025
Hamanaka, 2010, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends Biochem. Sci., 35, 505, 10.1016/j.tibs.2010.04.002
Holmstrom, 2014, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol., 15, 411, 10.1038/nrm3801
Chandel, 2015, Evolution of mitochondria as signaling organelles, Cell Metab., 22, 204, 10.1016/j.cmet.2015.05.013
Quinlan, 2013, Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox Biol., 1, 304, 10.1016/j.redox.2013.04.005
Nickel, 2014, Mitochondrial reactive oxygen species production and elimination, J. Mol. Cell. Cardiol., 10.1016/j.yjmcc.2014.03.011
Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478
Muller, 2004, Complex III releases superoxide to both sides of the inner mitochondrial membrane, J. Biol. Chem., 279, 49064, 10.1074/jbc.M407715200
Fridovich, 1997, Superoxide anion radical (O2), superoxide dismutases, and related matters, J. Biol. Chem., 272, 18515, 10.1074/jbc.272.30.18515
Han, 2003, Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol, J. Biol. Chem., 278, 5557, 10.1074/jbc.M210269200
Orr, 2015, Suppressors of superoxide production from mitochondrial complex III, Nat. Chem. Biol., 11, 834, 10.1038/nchembio.1910
Outten, 2007, Iron-sulfur clusters as oxygen-responsive molecular switches, Nat. Chem. Biol., 3, 206, 10.1038/nchembio0407-206
Weisiger, 1973, Mitochondrial superoxide dis- mutase: site of synthesis and intramitochondrial localization, J. Biol. Chem., 248, 4793, 10.1016/S0021-9258(19)43735-6
Winterbourn, 2013, The biological chemistry of hydrogen peroxide, Methods Enzymol., 528, 3, 10.1016/B978-0-12-405881-1.00001-X
Bindoli, 2008, Thiol chemistry in peroxidase catalysis and redox signaling, Antioxid. Redox Signal., 10, 1549, 10.1089/ars.2008.2063
Rhee, 2012, Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides, J. Biol. Chem., 287, 4403, 10.1074/jbc.R111.283432
Hofmann, 2002, Peroxiredoxins, Biol. Chem., 383, 347, 10.1515/BC.2002.040
Brigelius-Flohe, 2013, Glutathione peroxidases, Biochim. Biophys. Acta, 1830, 3289, 10.1016/j.bbagen.2012.11.020
Echtay, 2002, Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants, J. Biol. Chem., 277, 47129, 10.1074/jbc.M208262200
Martinez-Reyes, 2015, TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions, Mol. Cell
Frederick, 2007, Moving mitochondria: establishing distribution of an essential organelle, Traffic, 8, 1668, 10.1111/j.1600-0854.2007.00644.x
Al-Mehdi, 2012, Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription, Sci. Signal., 5, 10.1126/scisignal.2002712
Janssen-Heininger, 2008, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med., 45, 1, 10.1016/j.freeradbiomed.2008.03.011
D'Autréaux, 2007, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8, 813, 10.1038/nrm2256
Nicolas Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antioxid. Redox Signal., 11, 997, 10.1089/ars.2008.2285
Finkel, 2012, From sulfenylation to sulfhydration: what a thiolate needs to tolerate, Sci. Signal., 5, 10.1126/scisignal.2002943
Delaunay, 2002, A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation, Cell, 111, 471, 10.1016/S0092-8674(02)01048-6
Jarvis, 2012, Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med., 53, 1522, 10.1016/j.freeradbiomed.2012.08.001
Sobotta, 2015, Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nat. Chem. Biol., 11, 64, 10.1038/nchembio.1695
Woo, 2010, Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling, Cell, 140, 517, 10.1016/j.cell.2010.01.009
Kil, 2012, Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria, Mol. Cell, 46, 584, 10.1016/j.molcel.2012.05.030
Kil, 2015, Circadian oscillation of sulfiredoxin in the mitochondria, Mol. Cell, 59, 651, 10.1016/j.molcel.2015.06.031
Rozengurt, 1992, Growth factors and cell proliferation, Curr. Opin. Cell Biol., 4, 161, 10.1016/0955-0674(92)90027-A
Rhee, 2000, Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation, Sci. Signal., 53
Tonks, 2005, Redox redux: revisiting PTPs and the control of cell signaling, Cell, 121, 667, 10.1016/j.cell.2005.05.016
Lee, 2002, Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem., 277, 20336, 10.1074/jbc.M111899200
Lim, 2015, Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression, J. Cell Biol., 210, 23, 10.1083/jcb.201412068
Connor, 2005, Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation, J. Biol. Chem., 280, 16916, 10.1074/jbc.M410690200
Paulsen, 2012, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol., 8, 57, 10.1038/nchembio.736
Chiarugi, 2003, Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction, Trends Biochem. Sci., 28, 509, 10.1016/S0968-0004(03)00174-9
Giannoni, 2005, Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth, Mol. Cell. Biol., 25, 6391, 10.1128/MCB.25.15.6391-6403.2005
Chiarugi, 2008, Src redox regulation: there is more than meets the eye, Mol. Cells, 26, 329
Xanthoudakis, 1992, Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity, EMBO, 11, 653, 10.1002/j.1460-2075.1992.tb05097.x
Patterson, 2015, A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling, Proc. Natl. Acad. Sci. USA, 112, E5679, 10.1073/pnas.1517932112
Wang, 1995, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension, Proc. Natl. Acad. Sci. USA, 92, 5510, 10.1073/pnas.92.12.5510
Semenza, 2012, Hypoxia-inducible factors in physiology and medicine, Cell, 148, 399, 10.1016/j.cell.2012.01.021
Kaelin, 2008, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 30, 393, 10.1016/j.molcel.2008.04.009
Chandel, 1998, Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA, 95, 11715, 10.1073/pnas.95.20.11715
Chandel, 2000, Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing, J. Biol. Chem., 275, 25130, 10.1074/jbc.M001914200
Waypa, 2010, Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells, Circ. Res., 106, 526, 10.1161/CIRCRESAHA.109.206334
Guzy, 2005, Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing, Cell Metab., 1, 401, 10.1016/j.cmet.2005.05.001
Brunelle, 2005, Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation, Cell Metab., 1, 409, 10.1016/j.cmet.2005.05.002
Mansfield, 2005, Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation, Cell Metab., 1, 393, 10.1016/j.cmet.2005.05.003
Bell, 2007, The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production, J. Cell Biol., 177, 1029, 10.1083/jcb.200609074
Carmeliet, 2011, Molecular mechanisms and clinical applications of angiogenesis, Nature, 473, 298, 10.1038/nature10144
De Smet, 2009, Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way, Arterioscler. Thromb. Vasc. Biol., 29, 639, 10.1161/ATVBAHA.109.185165
Pugh, 2003, Regulation of angiogenesis by hypoxia: role of the HIF system, Nature, 9, 677
Ferrara, 2009, VEGF-A: a critical regulator of blood vessel growth, Eur. Cytokine Netw., 20, 158, 10.1684/ecn.2009.0170
Hoeben, 2004, Vascular endothelial growth factor and angiogenesis, Pharmacol. Rev., 56, 549, 10.1124/pr.56.4.3
Pastukh, 2015, An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression, Am. J. Physiol. Lung Cell. Mol. Physiol., 309, L1367, 10.1152/ajplung.00236.2015
Grishko, 2001, Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene, FASEB J., 15, 1267, 10.1096/fj.00-0755fje
Haase, 2013, Regulation of erythropoiesis by hypoxia-inducible factors, Blood Rev., 27, 41, 10.1016/j.blre.2012.12.003
Watowich, 2011, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways, J. Investig. Med., 59, 1067, 10.2310/JIM.0b013e31820fb28c
Broudy, 1991, Erythropoietin receptor characteristics on primary human erythroid cells, Blood, 77, 2583, 10.1182/blood.V77.12.2583.2583
Jelkmann, 2008, The erythropoietin receptor in normal and cancer tissues, Crit. Rev. Oncol. Hematol., 67, 39, 10.1016/j.critrevonc.2008.03.006
Adelman, 1999, Multilineage embryonic hematopoiesis requires hypoxic ARNT activity, Genes Dev., 13, 2478, 10.1101/gad.13.19.2478
Ristow, 2014, Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288, 10.2203/dose-response.13-035.Ristow
Harman, 1956, Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298, 10.1093/geronj/11.3.298
Packer, 1977, Low oxygen concentration extends the lifespan of cultured human diploid cells, Nature, 267, 423, 10.1038/267423a0
Bell, 2007, Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia, Mol. Cell. Biol., 27, 5737, 10.1128/MCB.02265-06
Welford, 2006, HIF1alpha delays premature senescence through the activation of MIF, Genes Dev., 20, 3366, 10.1101/gad.1471106
Mehta, 2009, Proteasomal regulation of the hypoxic response modulates aging in C. elegans, Science, 324, 1196, 10.1126/science.1173507
Schieber, 2014, TOR signaling couples oxygen sensing to lifespan in C. elegans, Cell Rep., 9, 9, 10.1016/j.celrep.2014.08.075
Wang, 2009, Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1 in long-lived Mclk1+/- mouse mutants, J. Immunol., 184, 582, 10.4049/jimmunol.0902352
Lee, 2010, Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity, Curr. Biol., 20, 2131, 10.1016/j.cub.2010.10.057
Wolf, 2004, Angiotensin II and cell cycle regulation, Hypertension, 43, 693, 10.1161/01.HYP.0000120963.09029.ca
Mehta, 2007, Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system, Am. J. Physiol. Cell Physiol., 292, C82, 10.1152/ajpcell.00287.2006
Kimura, 2005, Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide, Hypertension, 45, 438, 10.1161/01.HYP.0000157169.27818.ae
Dery, 2005, Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators, Int. J. Biochem. Cell Biol., 37, 535, 10.1016/j.biocel.2004.08.012
Richard, 2000, Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells, J. Biol. Chem., 275, 26765, 10.1016/S0021-9258(19)61441-9
Page, 2002, Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms, J. Biol. Chem., 277, 48403, 10.1074/jbc.M209114200
Pagé, 2008, Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion, Mol. Biol. Cell., 19, 86, 10.1091/mbc.E07-06-0612
Lauzier, 2007, Differential regulation of hypoxia-inducible factor-1 through receptor tyrosine kinase transactivation in vascular smooth muscle cells, Endocrinology, 148, 4023, 10.1210/en.2007-0285
Patten, 2010, Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species, Mol. Biol. Cell., 21, 3247, 10.1091/mbc.E10-01-0025
Lambert, 2010, HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism, Cardiovasc. Res., 88, 196, 10.1093/cvr/cvq152
Smith-Garvin, 2009, T cell activation, Annu. Rev. Immunol., 27, 591, 10.1146/annurev.immunol.021908.132706
Weinberg, 2015, Mitochondria in the regulation of innate and adaptive immunity, Immunity, 42, 406, 10.1016/j.immuni.2015.02.002
Carr, 2010, Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation, J. Immunol., 185, 1037, 10.4049/jimmunol.0903586
Sinclair, 2013, Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nat. Immunol., 14, 500, 10.1038/ni.2556
Wang, 2011, The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, 35, 871, 10.1016/j.immuni.2011.09.021
Sena, 2013, Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling, Immunity, 38, 225, 10.1016/j.immuni.2012.10.020
Chaudhri, 1986, Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation, J. Immunol., 137, 2646, 10.4049/jimmunol.137.8.2646
Laniewski, 2004, Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection, J. Virol., 78, 11246, 10.1128/JVI.78.20.11246-11257.2004
Gill, 2013, Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction, J. Biol. Chem., 288, 26246, 10.1074/jbc.M113.476895
Kaminski, 2010, Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression, J. Immunol., 184, 4827, 10.4049/jimmunol.0901662
Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013
Szatrowski, 1991, Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res., 51, 794
Ames, 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA, 90, 7915, 10.1073/pnas.90.17.7915
Schafer, 2009, Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment, Nature, 461, 109, 10.1038/nature08268
Chandel, 2014, The promise and perils of antioxidants for cancer patients, N. Engl. J. Med., 371, 177, 10.1056/NEJMcibr1405701
Kaikobad, 1997, Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts, Science, 275, 1649, 10.1126/science.275.5306.1649
Weinberg, 2010, Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. USA, 107, 8788, 10.1073/pnas.1003428107
Zhu, 2014, SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis, Cancer Metab., 2, 15, 10.1186/2049-3002-2-15
Finley, 2011, SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization, Cancer Cell, 19, 416, 10.1016/j.ccr.2011.02.014
Bell, 2011, SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production, Oncogene, 30, 2986, 10.1038/onc.2011.37
Bae, 1997, Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation, J. Biol. Chem., 272, 217, 10.1074/jbc.272.1.217
Chatterjee, 2006, Mitochondrial DNA mutations in human cancer, Oncogene, 25, 4663, 10.1038/sj.onc.1209604
Park, 2009, A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis, Hum. Mol. Genet., 18, 1578, 10.1093/hmg/ddp069
Sharma, 2011, Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation, Hum. Mol. Genet., 20, 4605, 10.1093/hmg/ddr395
Woo, 2012, Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice, Am. J. Pathol., 180, 24, 10.1016/j.ajpath.2011.10.003
Ishikawa, 2008, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, 320, 661, 10.1126/science.1156906
Folkman, 1971, Tumor angiogenesis: therapeutic implications, N. Engl. J. Med., 285, 1182, 10.1056/NEJM197111182852108
Ma, 2009, Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma, Proc. Natl. Acad. Sci. USA, 106, 8683, 10.1073/pnas.0812688106
Gao, 2007, HIF-dependent anti-tumorigenic effect of anti-oxidants in vivo, Cancer Cell, 12, 230, 10.1016/j.ccr.2007.08.004
Zhou, 2014, Cyclosporin A promotes tumor angiogenesis in a calcineurin-independent manner by increasing mitochondrial reactive oxygen species, Mol. Cancer Res., 12, 1663, 10.1158/1541-7786.MCR-14-0136
Denko, 2008, Hypoxia, HIF1 and glucose metabolism in the solid tumour, Nat. Rev. Cancer, 8, 705, 10.1038/nrc2468
Kim, 2006, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 3, 177, 10.1016/j.cmet.2006.02.002
Bjelakovic, 2007, Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis, JAMA, 297, 842, 10.1001/jama.297.8.842
Sayin, 2014, Antioxidants accelerate lung cancer progression in mice, Sci. Transl. Med., 6, 10.1126/scitranslmed.3007653
Cheng, 2013, Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC, Cancer, 13, 285
Porporato, 2014, A mitochondrial switch promotes tumor metastasis, Cell Rep., 8, 754, 10.1016/j.celrep.2014.06.043