Mitochondrial ROS regulation of proliferating cells

Free Radical Biology and Medicine - Tập 100 - Trang 86-93 - 2016
Lauren Diebold1, Navdeep S. Chandel1
1Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA

Tài liệu tham khảo

Glasauer, 2013, ROS Curr. Biol., 23, R100, 10.1016/j.cub.2012.12.011 Weinberg, 2009, Reactive oxygen species-dependent signaling regulates cancer, Cell. Mol. Life Sci., 66, 3663, 10.1007/s00018-009-0099-y Cross, 1987, Oxygen radicals and human disease, Ann. Intern. Med., 107, 526, 10.7326/0003-4819-107-4-526 Rhee, 2006, Cell signaling. H2O2, a necessary evil for cell signaling, Science, 312, 1882, 10.1126/science.1130481 Murphy, 2009, How mitochondria produce reactive oxygen species, Biochem. J., 417, 1, 10.1042/BJ20081386 Sena, 2012, Physiological roles of mitochondrial reactive oxygen species, Mol. Cell, 48, 158, 10.1016/j.molcel.2012.09.025 Hamanaka, 2010, Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends Biochem. Sci., 35, 505, 10.1016/j.tibs.2010.04.002 Holmstrom, 2014, Cellular mechanisms and physiological consequences of redox-dependent signalling, Nat. Rev. Mol. Cell Biol., 15, 411, 10.1038/nrm3801 Chandel, 2015, Evolution of mitochondria as signaling organelles, Cell Metab., 22, 204, 10.1016/j.cmet.2015.05.013 Quinlan, 2013, Sites of reactive oxygen species generation by mitochondria oxidizing different substrates, Redox Biol., 1, 304, 10.1016/j.redox.2013.04.005 Nickel, 2014, Mitochondrial reactive oxygen species production and elimination, J. Mol. Cell. Cardiol., 10.1016/j.yjmcc.2014.03.011 Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478 Muller, 2004, Complex III releases superoxide to both sides of the inner mitochondrial membrane, J. Biol. Chem., 279, 49064, 10.1074/jbc.M407715200 Fridovich, 1997, Superoxide anion radical (O2), superoxide dismutases, and related matters, J. Biol. Chem., 272, 18515, 10.1074/jbc.272.30.18515 Han, 2003, Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol, J. Biol. Chem., 278, 5557, 10.1074/jbc.M210269200 Orr, 2015, Suppressors of superoxide production from mitochondrial complex III, Nat. Chem. Biol., 11, 834, 10.1038/nchembio.1910 Outten, 2007, Iron-sulfur clusters as oxygen-responsive molecular switches, Nat. Chem. Biol., 3, 206, 10.1038/nchembio0407-206 Weisiger, 1973, Mitochondrial superoxide dis- mutase: site of synthesis and intramitochondrial localization, J. Biol. Chem., 248, 4793, 10.1016/S0021-9258(19)43735-6 Winterbourn, 2013, The biological chemistry of hydrogen peroxide, Methods Enzymol., 528, 3, 10.1016/B978-0-12-405881-1.00001-X Bindoli, 2008, Thiol chemistry in peroxidase catalysis and redox signaling, Antioxid. Redox Signal., 10, 1549, 10.1089/ars.2008.2063 Rhee, 2012, Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides, J. Biol. Chem., 287, 4403, 10.1074/jbc.R111.283432 Hofmann, 2002, Peroxiredoxins, Biol. Chem., 383, 347, 10.1515/BC.2002.040 Brigelius-Flohe, 2013, Glutathione peroxidases, Biochim. Biophys. Acta, 1830, 3289, 10.1016/j.bbagen.2012.11.020 Echtay, 2002, Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants, J. Biol. Chem., 277, 47129, 10.1074/jbc.M208262200 Martinez-Reyes, 2015, TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions, Mol. Cell Frederick, 2007, Moving mitochondria: establishing distribution of an essential organelle, Traffic, 8, 1668, 10.1111/j.1600-0854.2007.00644.x Al-Mehdi, 2012, Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription, Sci. Signal., 5, 10.1126/scisignal.2002712 Janssen-Heininger, 2008, Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radic. Biol. Med., 45, 1, 10.1016/j.freeradbiomed.2008.03.011 D'Autréaux, 2007, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nat. Rev. Mol. Cell Biol., 8, 813, 10.1038/nrm2256 Nicolas Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antioxid. Redox Signal., 11, 997, 10.1089/ars.2008.2285 Finkel, 2012, From sulfenylation to sulfhydration: what a thiolate needs to tolerate, Sci. Signal., 5, 10.1126/scisignal.2002943 Delaunay, 2002, A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation, Cell, 111, 471, 10.1016/S0092-8674(02)01048-6 Jarvis, 2012, Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells, Free Radic. Biol. Med., 53, 1522, 10.1016/j.freeradbiomed.2012.08.001 Sobotta, 2015, Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling, Nat. Chem. Biol., 11, 64, 10.1038/nchembio.1695 Woo, 2010, Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling, Cell, 140, 517, 10.1016/j.cell.2010.01.009 Kil, 2012, Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria, Mol. Cell, 46, 584, 10.1016/j.molcel.2012.05.030 Kil, 2015, Circadian oscillation of sulfiredoxin in the mitochondria, Mol. Cell, 59, 651, 10.1016/j.molcel.2015.06.031 Rozengurt, 1992, Growth factors and cell proliferation, Curr. Opin. Cell Biol., 4, 161, 10.1016/0955-0674(92)90027-A Rhee, 2000, Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation, Sci. Signal., 53 Tonks, 2005, Redox redux: revisiting PTPs and the control of cell signaling, Cell, 121, 667, 10.1016/j.cell.2005.05.016 Lee, 2002, Reversible inactivation of the tumor suppressor PTEN by H2O2, J. Biol. Chem., 277, 20336, 10.1074/jbc.M111899200 Lim, 2015, Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression, J. Cell Biol., 210, 23, 10.1083/jcb.201412068 Connor, 2005, Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation, J. Biol. Chem., 280, 16916, 10.1074/jbc.M410690200 Paulsen, 2012, Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity, Nat. Chem. Biol., 8, 57, 10.1038/nchembio.736 Chiarugi, 2003, Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction, Trends Biochem. Sci., 28, 509, 10.1016/S0968-0004(03)00174-9 Giannoni, 2005, Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth, Mol. Cell. Biol., 25, 6391, 10.1128/MCB.25.15.6391-6403.2005 Chiarugi, 2008, Src redox regulation: there is more than meets the eye, Mol. Cells, 26, 329 Xanthoudakis, 1992, Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity, EMBO, 11, 653, 10.1002/j.1460-2075.1992.tb05097.x Patterson, 2015, A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling, Proc. Natl. Acad. Sci. USA, 112, E5679, 10.1073/pnas.1517932112 Wang, 1995, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension, Proc. Natl. Acad. Sci. USA, 92, 5510, 10.1073/pnas.92.12.5510 Semenza, 2012, Hypoxia-inducible factors in physiology and medicine, Cell, 148, 399, 10.1016/j.cell.2012.01.021 Kaelin, 2008, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, 30, 393, 10.1016/j.molcel.2008.04.009 Chandel, 1998, Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA, 95, 11715, 10.1073/pnas.95.20.11715 Chandel, 2000, Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing, J. Biol. Chem., 275, 25130, 10.1074/jbc.M001914200 Waypa, 2010, Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells, Circ. Res., 106, 526, 10.1161/CIRCRESAHA.109.206334 Guzy, 2005, Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing, Cell Metab., 1, 401, 10.1016/j.cmet.2005.05.001 Brunelle, 2005, Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation, Cell Metab., 1, 409, 10.1016/j.cmet.2005.05.002 Mansfield, 2005, Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation, Cell Metab., 1, 393, 10.1016/j.cmet.2005.05.003 Bell, 2007, The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production, J. Cell Biol., 177, 1029, 10.1083/jcb.200609074 Carmeliet, 2011, Molecular mechanisms and clinical applications of angiogenesis, Nature, 473, 298, 10.1038/nature10144 De Smet, 2009, Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way, Arterioscler. Thromb. Vasc. Biol., 29, 639, 10.1161/ATVBAHA.109.185165 Pugh, 2003, Regulation of angiogenesis by hypoxia: role of the HIF system, Nature, 9, 677 Ferrara, 2009, VEGF-A: a critical regulator of blood vessel growth, Eur. Cytokine Netw., 20, 158, 10.1684/ecn.2009.0170 Hoeben, 2004, Vascular endothelial growth factor and angiogenesis, Pharmacol. Rev., 56, 549, 10.1124/pr.56.4.3 Pastukh, 2015, An oxidative DNA “damage” and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression, Am. J. Physiol. Lung Cell. Mol. Physiol., 309, L1367, 10.1152/ajplung.00236.2015 Grishko, 2001, Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene, FASEB J., 15, 1267, 10.1096/fj.00-0755fje Haase, 2013, Regulation of erythropoiesis by hypoxia-inducible factors, Blood Rev., 27, 41, 10.1016/j.blre.2012.12.003 Watowich, 2011, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways, J. Investig. Med., 59, 1067, 10.2310/JIM.0b013e31820fb28c Broudy, 1991, Erythropoietin receptor characteristics on primary human erythroid cells, Blood, 77, 2583, 10.1182/blood.V77.12.2583.2583 Jelkmann, 2008, The erythropoietin receptor in normal and cancer tissues, Crit. Rev. Oncol. Hematol., 67, 39, 10.1016/j.critrevonc.2008.03.006 Adelman, 1999, Multilineage embryonic hematopoiesis requires hypoxic ARNT activity, Genes Dev., 13, 2478, 10.1101/gad.13.19.2478 Ristow, 2014, Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288, 10.2203/dose-response.13-035.Ristow Harman, 1956, Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298, 10.1093/geronj/11.3.298 Packer, 1977, Low oxygen concentration extends the lifespan of cultured human diploid cells, Nature, 267, 423, 10.1038/267423a0 Bell, 2007, Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia, Mol. Cell. Biol., 27, 5737, 10.1128/MCB.02265-06 Welford, 2006, HIF1alpha delays premature senescence through the activation of MIF, Genes Dev., 20, 3366, 10.1101/gad.1471106 Mehta, 2009, Proteasomal regulation of the hypoxic response modulates aging in C. elegans, Science, 324, 1196, 10.1126/science.1173507 Schieber, 2014, TOR signaling couples oxygen sensing to lifespan in C. elegans, Cell Rep., 9, 9, 10.1016/j.celrep.2014.08.075 Wang, 2009, Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1 in long-lived Mclk1+/- mouse mutants, J. Immunol., 184, 582, 10.4049/jimmunol.0902352 Lee, 2010, Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity, Curr. Biol., 20, 2131, 10.1016/j.cub.2010.10.057 Wolf, 2004, Angiotensin II and cell cycle regulation, Hypertension, 43, 693, 10.1161/01.HYP.0000120963.09029.ca Mehta, 2007, Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system, Am. J. Physiol. Cell Physiol., 292, C82, 10.1152/ajpcell.00287.2006 Kimura, 2005, Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide, Hypertension, 45, 438, 10.1161/01.HYP.0000157169.27818.ae Dery, 2005, Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators, Int. J. Biochem. Cell Biol., 37, 535, 10.1016/j.biocel.2004.08.012 Richard, 2000, Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells, J. Biol. Chem., 275, 26765, 10.1016/S0021-9258(19)61441-9 Page, 2002, Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms, J. Biol. Chem., 277, 48403, 10.1074/jbc.M209114200 Pagé, 2008, Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion, Mol. Biol. Cell., 19, 86, 10.1091/mbc.E07-06-0612 Lauzier, 2007, Differential regulation of hypoxia-inducible factor-1 through receptor tyrosine kinase transactivation in vascular smooth muscle cells, Endocrinology, 148, 4023, 10.1210/en.2007-0285 Patten, 2010, Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species, Mol. Biol. Cell., 21, 3247, 10.1091/mbc.E10-01-0025 Lambert, 2010, HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism, Cardiovasc. Res., 88, 196, 10.1093/cvr/cvq152 Smith-Garvin, 2009, T cell activation, Annu. Rev. Immunol., 27, 591, 10.1146/annurev.immunol.021908.132706 Weinberg, 2015, Mitochondria in the regulation of innate and adaptive immunity, Immunity, 42, 406, 10.1016/j.immuni.2015.02.002 Carr, 2010, Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation, J. Immunol., 185, 1037, 10.4049/jimmunol.0903586 Sinclair, 2013, Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nat. Immunol., 14, 500, 10.1038/ni.2556 Wang, 2011, The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, 35, 871, 10.1016/j.immuni.2011.09.021 Sena, 2013, Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling, Immunity, 38, 225, 10.1016/j.immuni.2012.10.020 Chaudhri, 1986, Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation, J. Immunol., 137, 2646, 10.4049/jimmunol.137.8.2646 Laniewski, 2004, Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection, J. Virol., 78, 11246, 10.1128/JVI.78.20.11246-11257.2004 Gill, 2013, Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction, J. Biol. Chem., 288, 26246, 10.1074/jbc.M113.476895 Kaminski, 2010, Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression, J. Immunol., 184, 4827, 10.4049/jimmunol.0901662 Hanahan, 2011, Hallmarks of cancer: the next generation, Cell, 144, 646, 10.1016/j.cell.2011.02.013 Szatrowski, 1991, Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res., 51, 794 Ames, 1993, Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA, 90, 7915, 10.1073/pnas.90.17.7915 Schafer, 2009, Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment, Nature, 461, 109, 10.1038/nature08268 Chandel, 2014, The promise and perils of antioxidants for cancer patients, N. Engl. J. Med., 371, 177, 10.1056/NEJMcibr1405701 Kaikobad, 1997, Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts, Science, 275, 1649, 10.1126/science.275.5306.1649 Weinberg, 2010, Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc. Natl. Acad. Sci. USA, 107, 8788, 10.1073/pnas.1003428107 Zhu, 2014, SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis, Cancer Metab., 2, 15, 10.1186/2049-3002-2-15 Finley, 2011, SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization, Cancer Cell, 19, 416, 10.1016/j.ccr.2011.02.014 Bell, 2011, SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production, Oncogene, 30, 2986, 10.1038/onc.2011.37 Bae, 1997, Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation, J. Biol. Chem., 272, 217, 10.1074/jbc.272.1.217 Chatterjee, 2006, Mitochondrial DNA mutations in human cancer, Oncogene, 25, 4663, 10.1038/sj.onc.1209604 Park, 2009, A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis, Hum. Mol. Genet., 18, 1578, 10.1093/hmg/ddp069 Sharma, 2011, Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation, Hum. Mol. Genet., 20, 4605, 10.1093/hmg/ddr395 Woo, 2012, Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice, Am. J. Pathol., 180, 24, 10.1016/j.ajpath.2011.10.003 Ishikawa, 2008, ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, 320, 661, 10.1126/science.1156906 Folkman, 1971, Tumor angiogenesis: therapeutic implications, N. Engl. J. Med., 285, 1182, 10.1056/NEJM197111182852108 Ma, 2009, Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi’s sarcoma, Proc. Natl. Acad. Sci. USA, 106, 8683, 10.1073/pnas.0812688106 Gao, 2007, HIF-dependent anti-tumorigenic effect of anti-oxidants in vivo, Cancer Cell, 12, 230, 10.1016/j.ccr.2007.08.004 Zhou, 2014, Cyclosporin A promotes tumor angiogenesis in a calcineurin-independent manner by increasing mitochondrial reactive oxygen species, Mol. Cancer Res., 12, 1663, 10.1158/1541-7786.MCR-14-0136 Denko, 2008, Hypoxia, HIF1 and glucose metabolism in the solid tumour, Nat. Rev. Cancer, 8, 705, 10.1038/nrc2468 Kim, 2006, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 3, 177, 10.1016/j.cmet.2006.02.002 Bjelakovic, 2007, Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis, JAMA, 297, 842, 10.1001/jama.297.8.842 Sayin, 2014, Antioxidants accelerate lung cancer progression in mice, Sci. Transl. Med., 6, 10.1126/scitranslmed.3007653 Cheng, 2013, Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC, Cancer, 13, 285 Porporato, 2014, A mitochondrial switch promotes tumor metastasis, Cell Rep., 8, 754, 10.1016/j.celrep.2014.06.043