Oxidative stress adaptation improves the heat tolerance of Pseudomonas fluorescens SN15-2

Biological Control - Tập 138 - Trang 104070 - 2019
Jun Chen1, Xiaobing Wang1, Danyan Tang1, Wei Wang1
1State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China

Tài liệu tham khảo

Almario, 2013, Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens, Mol. Plant Microbe Interact., 26, 566, 10.1094/MPMI-11-12-0274-R Amiet-Charpentier, 1999, Rhizobacteria microencapsulation: properties of microparticles obtained by spray-drying, J. Microencaps., 16, 215, 10.1080/026520499289194 Ashraf, 2007, Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot., 59, 206, 10.1016/j.envexpbot.2005.12.006 Ban, 2018, Thermostabilization of a thermophilic 1,4-alpha-glucan branching enzyme through C-terminal truncation, Int. J. Biol. Macromol., 107, 1510, 10.1016/j.ijbiomac.2017.10.020 Barahona, 2011, Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens, Appl. Environ. Microbiol., 77, 5412, 10.1128/AEM.00320-11 Barbosa, 2015, Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice, Food Microbiol., 52, 77, 10.1016/j.fm.2015.06.010 Botelho, 2006, Fluorescent pseudomonads associated with the rhizosphere of crops – An overview, Braz. J. Microbiol., 37, 15, 10.1590/S1517-83822006000400001 Chen, 2015, Mechanism of H2O2-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis, Int. J. Food Microbiol., 193, 152, 10.1016/j.ijfoodmicro.2014.10.025 Cheng, 2016, Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa, Biol. Control, 95, 49, 10.1016/j.biocontrol.2016.01.001 David, 2018, Chapter 10 – Pseudomonas fluorescens: a Plant-growth-promoting rhizobacterium (PGPR) with potential role in biocontrol of pests of crops, 221 Davidson, 1996, Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A, 93, 5116, 10.1073/pnas.93.10.5116 Dzeja, 2009, Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing, Int. J. Mol. Sci., 10, 1729, 10.3390/ijms10041729 Elbein, 2003, New insights on trehalose: a multifunctional molecule, Glycobiology, 13, 17R, 10.1093/glycob/cwg047 Ferrando, 2015, Resistance of functional Lactobacillus plantarum strains against food stress conditions, Food Microbiol., 48, 63, 10.1016/j.fm.2014.12.005 Franklin, 1976, Biochemical, genetic, and regulatory studies of alanine catabolism in Escherichia coli K12, Mol. General Genet. MGG, 149, 229, 10.1007/BF00332894 Frimmersdorf, 2010, How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach, Environ. Microbiol., 12, 1734, 10.1111/j.1462-2920.2010.02253.x Gaetani, 1996, Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes, Blood, 1595, 10.1182/blood.V87.4.1595.bloodjournal8741595 Gillet, 2016, Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing, Annu. Rev. Anal. Chem. (Palo Alto Calif.), 9, 449, 10.1146/annurev-anchem-071015-041535 Graham, 2011, Proteomics in the microbial sciences, Bioeng Bugs, 2, 17, 10.4161/bbug.2.1.14413 Haas, 2005, Biological control of soil-borne pathogens by fluorescent pseudomonads, Nat. Rev. Microbiol., 3, 307, 10.1038/nrmicro1129 Hetmann, 2018, Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures, Mater. Sci. Eng. C Mater. Biol. Appl., 88, 130, 10.1016/j.msec.2018.03.006 Hogrebe, 2018, Benchmarking common quantification strategies for large-scale phosphoproteomics, Nat. Commun., 9, 1045, 10.1038/s41467-018-03309-6 Hudek, 2018, Cyanobacterial catalase activity prevents oxidative stress induced by Pseudomonas fluorescens DUS1-27 from inhibiting Brassica napus L. (canola) growth, Microbes Environ., 33, 407, 10.1264/jsme2.ME18061 Islam, 2018, In vitro study of biocontrol potential of rhizospheric Pseudomonas aeruginosa against Fusarium oxysporum f. sp. cucumerinum. Egyptian Journal of Biological, Pest Control, 28 Kobori, 2015, Methemoglobin reduction mediated by D-amino acid dehydrogenase in Propsilocerus akamusi (Tokunaga) larvae, J. Insect Physiol., 77, 33, 10.1016/j.jinsphys.2015.04.002 Kolodkingal, 2010, D-amino acids trigger biofilm disassembly, Science, 328, 627, 10.1126/science.1188628 Larkindale, 2002, Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid, Plant Physiol., 128, 682, 10.1104/pp.010320 Lauffenburger, 2010, Bacterial chemotaxis, Ann. N. Y. Acad. Sci., 506, 281, 10.1111/j.1749-6632.1987.tb23827.x Li, 2018, Quantitative proteomic analysis of deciduous molars during cap to bell transition in miniature pig, J. Proteomics, 172, 57, 10.1016/j.jprot.2017.10.013 Li, 2017, Proteomics analysis reveals the molecular mechanism underlying the transition from primary to secondary growth of poplar, J. Plant Physiol., 213, 1, 10.1016/j.jplph.2017.02.009 Liu, 2012, Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure, FEMS Microbiol. Ecol., 80, 578, 10.1111/j.1574-6941.2012.01324.x Liu, 2017, iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress, J. Proteomics, 156, 75, 10.1016/j.jprot.2017.01.009 Liu, 2018, The response of glutathione peroxidase 1 and glutathione peroxidase 7 under different oxidative stresses in black tiger shrimp, Penaeus monodon, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 217, 1, 10.1016/j.cbpb.2017.12.009 Lou, 2018, Transcriptomic response of Ralstonia solanacearum to antimicrobial Pseudomonas fluorescens SN15-2 metabolites, Can. J. Microbiol., 1 Ma, 2015, Microencapsulation of Bacillus subtilis B99–2 and its biocontrol efficiency against Rhizoctonia solani in tomato, Biol. Control, 90, 34, 10.1016/j.biocontrol.2015.05.013 MacLean, 2010, Skyline: an open source document editor for creating and analyzing targeted proteomics experiments, Bioinformatics, 26, 966, 10.1093/bioinformatics/btq054 Mahla, 2012, Heat-induced oxidative stress and changes in protein profile in wheat cultivars, Qual. Assurance Safety Crops Foods, 4, 137, 10.1111/j.1757-837X.2012.00141.x Marshall, 1968, Oxidation of D-amino acids by a particulate enzyme from Pseudomonas aeruginosa, J. Bacteriol., 95, 1419, 10.1128/JB.95.4.1419-1424.1968 Miller, 2001, Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165, 10.1146/annurev.micro.55.1.165 Mrabet, 2013, Efficacy of selected Pseudomonas strains for biocontrol of Rhizoctonia solani in potato, Phytopathologia Mediterranea, 52, 449 Nagarajkumar, 2005, Detoxification of oxalic acid by Pseudomonas fluorescens strain pfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani, Microbiol. Res., 160, 291, 10.1016/j.micres.2005.02.002 Paulovich, 2016, Quantifying the human proteome, Nat. Biotechnol., 34, 1033, 10.1038/nbt.3695 Prabhukarthikeyan, 2017, Bio-suppression of turmeric rhizome rot disease and understanding the molecular basis of tripartite interaction among Curcuma longa, Pythium aphanidermatum and Pseudomonas fluorescens, Biol. Control, 111, 23, 10.1016/j.biocontrol.2017.05.003 Qu, 2018, Proteomics for studying the effects of L. rhamnosus LV108 against non-alcoholic fatty liver disease in rats, RSC Adv., 8, 38517, 10.1039/C8RA06771F Rainey, 1999, Adaptation of Pseudomonas fluorescens to the plant rhizosphere, Environ. Microbiol., 1, 14, 10.1046/j.1462-2920.1999.00040.x Rangel, 2011, Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes, World J. Microbiol. Biotechnol., 27, 1281, 10.1007/s11274-010-0584-3 Salanoubat, 2002, Genome sequence of the plant pathogen Ralstonia solanacearum, Nature, 415, 497, 10.1038/415497a Sepasi Tehrani, 2018, Catalase and its mysteries, Prog. Biophys. Mol., Biol, 1 Shen, 2014, Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in greenhouses and the field, Crop Protect., 56, 87, 10.1016/j.cropro.2013.11.020 Sivamani, 1988, Biological control of Fusarium oxysporum f.sp. cubense in banana by inoculation with Pseudomonas fluorescens, Plant Soil, 107, 3, 10.1007/BF02371537 Stephan, 2016, Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy, Biol. Control, 94, 74, 10.1016/j.biocontrol.2015.12.004 Tsukada, 1966, D-amino acid dehydrogenases of Pseudomonas fluorescens, J. Biol. Chem., 241, 4522, 10.1016/S0021-9258(18)99750-4 Vasilogiannakopoulou, 2018, Impact of aldehyde dehydrogenase activity on gliomas, Trends Pharmacol. Sci., 39, 605, 10.1016/j.tips.2018.04.001 Wallace, 2018, Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage, Biol. Control, 117, 13, 10.1016/j.biocontrol.2017.08.019 Wan, 2017, Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition, Biol. Control, 112, 1, 10.1016/j.biocontrol.2017.05.014 Wan, 2018, Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato, J. Phytopathol., 166, 324, 10.1111/jph.12690 Whiteley, 2015, Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development, Biotechnol. Adv., 33, 124, 10.1016/j.biotechadv.2014.11.010 Wisniewski, 2009, Universal sample preparation method for proteome analysis, Nat. Meth., 6, 359, 10.1038/nmeth.1322 Zhang, 2016, Interconversion of peptide mass spectral libraries derivatized with iTRAQ or TMT labels, J. Proteome Res., 15, 3180, 10.1021/acs.jproteome.6b00406