The Sturtian ‘snowball’ glaciation: fire and ice

Earth and Planetary Science Letters - Tập 211 - Trang 1-12 - 2003
Y. Goddéris1, Y. Donnadieu2, A. Nédélec1, B. Dupré1, C. Dessert1, A. Grard3, G. Ramstein2, L.M. François3
1Laboratoire des Mécanismes et Transferts en Géologie, UMR 5563, CNRS – Université Paul Sabatier – IRD, 38, rue des Trente-Six Ponts, 31400 Toulouse, France
2Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA, Gif sur Yvette, France
3Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium

Tài liệu tham khảo

J.L. Kirschvink, Late Proterozoic low-latitude global glaciation: the snowball earth, in: J.W. Schopf, C. Klein (Eds.), The Proterozoic Biosphere, Cambridge University Press, Cambridge, 1992, pp. 51–52. Harland, 1964, Critical evidence for a great infra-Cambrian glaciation, Geol. Rundsch., 54, 45, 10.1007/BF01821169 Park, 1997, Paleomagnetic evidence for low latitude glaciation during deposition of the Neoproterozoic Rapitan Group, MacKenzie Mountains, N.W.T., Canada, Can. J. Earth Sci., 34, 34, 10.1139/e17-003 Sohl, 1999, Paleomagnetic polarity reversals in Marinoan (ca 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciation in Neoproterozoic time, Geol. Soc. Am. Bull., 111, 1120, 10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2 Hoffman, 1998, A Neoproterozoic Snowball Earth, Science, 281, 1342, 10.1126/science.281.5381.1342 Hoffman, 2002, The snowball Earth hypothesis testing the limits of global change, Terra Nova, 14, 129, 10.1046/j.1365-3121.2002.00408.x Y. Donnadieu, G. Ramstein, F. Fluteau, J. Besse, J.G. Meert, Is high obliquity a plausible cause for Neoproterozoic glaciations?, Geophys. Res. Lett. 29(23) (2003) 10.1029/2002GL015902. B. Levrard, J. Laskar, Climate friction and the Earth’s obliquity, Geophys. J. Int. (2003) in press. Evans, 2000, Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox, Am. J. Sci., 300, 347, 10.2475/ajs.300.5.347 D.P. Schrag, R.A. Berner, P.F. Hoffman, G.P. Halverson, On the initiation of a Snowball Earth, Geochem. Geophys. Geosyst. 3 (2002) 10.1029/2001GC000219. McKirdy, 2001, A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia, Precamb. Res., 106, 149, 10.1016/S0301-9268(00)00130-3 Dessert, 2001, Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater, Earth Planet. Sci. Lett., 188, 459, 10.1016/S0012-821X(01)00317-X Courtillot, 1986, Deccan flood basalt at the Cretaceous/Tertiary boundary?, Earth Planet. Sci. Lett., 80, 361, 10.1016/0012-821X(86)90118-4 Brady, 1991, The effect of silicate weathering on global temperature and atmospheric CO2, J. Geophys. Res., 96, 18101, 10.1029/91JB01898 Walker, 1981, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature, J. Geophys. Res., 86, 9776, 10.1029/JC086iC10p09776 C. Dessert, B. Dupré, J. Gaillardet, L.M. François, C.J. Allègre, Basalt weathering laws and the impact of basalt weathering on the global carbon cycle, Chem. Geol. (2003). Meert, 2001, Assembly and break-up of Rodinia: introduction to the special volume, Precamb. Res., 110, 1, 10.1016/S0301-9268(01)00177-2 Wingate, 1998, Ion microprobe U-Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia, Precamb. Res., 87, 135, 10.1016/S0301-9268(97)00072-7 Wingate, 2000, Age and paleomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma, Precamb. Res., 100, 335, 10.1016/S0301-9268(99)00080-7 Park, 1995, A proposed giant dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America, Earth Planet. Sci. Lett., 132, 129, 10.1016/0012-821X(95)00059-L Li, 1999, The break up of Rodinia: did it start with a mantle plume beneath South China?, Earth Planet. Sci. Lett., 173, 171, 10.1016/S0012-821X(99)00240-X Key, 2001, The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization, J. Afr. Earth Sci., 33, 503, 10.1016/S0899-5362(01)00098-7 Ernst, 2002, Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodyn., 34, 309, 10.1016/S0264-3707(02)00025-X Barovitch, 2000, A Neoproterozoic flood basalt province in southern-central Australia: geochemical and Nd isotope evidence from basin fill, Precamb. Res., 100, 213, 10.1016/S0301-9268(99)00075-3 Wignall, 2001, Large igneous provinces and mass extinctions, Earth Sci. Rev., 53, 1, 10.1016/S0012-8252(00)00037-4 François, 1992, Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater, Am. J. Sci., 292, 81, 10.2475/ajs.292.2.81 Caldeira, 1992, Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds, Nature, 359, 226, 10.1038/359226a0 Torsvik, 2001, Rodinia refined or obscured: paleomagnetism of the Malani igneous suite (NW India), Precamb. Res., 108, 319, 10.1016/S0301-9268(01)00139-5 Jenkins, 1999, GCM simulations of Snowball Earth conditions during the Late Proterozoic, Geophys. Res. Lett., 26, 2263, 10.1029/1999GL900538 Hyde, 2000, Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice sheet model, Nature, 405, 425, 10.1038/35013005 P. Oliva, J. Viers, B. Dupré, Chemical weathering in granitic crystalline environments, Chem. Geol. (2003). Gaillardet, 1999, Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers, Chem. Geol., 159, 3, 10.1016/S0009-2541(99)00031-5 M. Javoy, G. Michard, EOS Trans. AGU 70 (1989) 1421. G.P. Halverson, P.F. Hoffman, D.P. Schrag, A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: a trigger mechanism for snowball Earth?, Geochem. Geophys. Geosyst. 3 (2002) 10.1029/2001GC000244. Jacobsen, 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 161, 37, 10.1016/S0009-2541(99)00080-7 Walter, 2000, Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models, Precamb. Res., 100, 371, 10.1016/S0301-9268(99)00082-0 Dalziel, 1997, Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation, Geol. Soc. Am. Bull., 109, 16, 10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2 Trompette, 2000, Gondwana evolution; its assembly at around 600 Ma, C. R. Acad. Sci. Paris, 330, 305 Meert, 2003, A synopsis of events related to the assembly of eastern Gondwana, Tectonophysics, 362, 1, 10.1016/S0040-1951(02)00629-7 Stern, 1994, Arc assembly and continental collision in the Neoproterozoic East Africa Orogen: implications on the consolidation of Gondwanaland, Annu. Rev. Earth Planet. Sci., 22, 319, 10.1146/annurev.ea.22.050194.001535 Jahn, 2001, The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications, Chem. Geol., 178, 143, 10.1016/S0009-2541(01)00264-9 Young, 1995, Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents?, Geology, 23, 153, 10.1130/0091-7613(1995)023<0153:ANGDPO>2.3.CO;2 Hartz, 2002, Baltica upside down: a new plate tectonic model for Rodinia and the Iapetus Ocean, Geology, 30, 255, 10.1130/0091-7613(2002)030<0255:BUDANP>2.0.CO;2 Cawood, 2001, Paleogeographic development of the east Laurentian margin: constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians, Geol. Soc. Am. Bull., 113, 1234, 10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.CO;2 France-Lanord, 1997, Organic carbon burial forcing of the carbon cycle from Himalaya erosion, Nature, 390, 65, 10.1038/36324 Hyde, 1990, On the relationship between polar continentality and climate: studies with a non-linear energy balance model, J. Geophys. Res. D, 11, 18653, 10.1029/JD095iD11p18653 Goddéris, 1996, Balancing the Cenozoic carbon and alkalinity cycles: Constraints from isotopic records, Geophys. Res. Lett., 23, 3743, 10.1029/96GL03575 Courtillot, 1999, On causal links between flood basalts and continental breakup, Earth Planet. Sci. Lett., 166, 177, 10.1016/S0012-821X(98)00282-9 Marzolli, 1999, Extensive 200 million year old continental flood basalts of the Central Atlantic Magmatic Province, Science, 284, 616, 10.1126/science.284.5414.616 Weil, 1998, The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma, Earth Planet. Sci. Lett., 154, 13, 10.1016/S0012-821X(97)00127-1 Cawood, 2001, Opening Iapetus: constraints from the Laurentian margin in Newfoundland, Geol. Soc. Am. Bull., 113, 443, 10.1130/0016-7606(2001)113<0443:OICFTL>2.0.CO;2