Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures

Computer Methods in Applied Mechanics and Engineering - Tập 196 - Trang 1048-1073 - 2007
R.A. Arciniega1, J.N. Reddy1
1Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA

Tài liệu tham khảo

Ahmad, 1970, Analysis of thick and thin shell structures by curved finite elements, Int. J. Numer. Meth. Engrg., 2, 419, 10.1002/nme.1620020310 Simo, 1989, On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization, Comput. Methods Appl. Mech. Engrg., 72, 267, 10.1016/0045-7825(89)90002-9 Chinosi, 1998, Hierarchic finite elements for thin Naghdi shell model, Int. J. Solids Struct., 35, 1863, 10.1016/S0020-7683(97)83328-8 Cho, 2003, Development of geometrically exact new elements based on general curvilinear coordinates, Int. J. Numer. Meth. Engrg., 56, 81, 10.1002/nme.546 Chapelle, 2003, MITC elements for a classical shell model, Comput. Struct., 81, 523, 10.1016/S0045-7949(02)00408-X Büchter, 1992, Shell theory vs. degeneration – a comparison in large rotation finite element analysis, Int. J. Numer. Meth. Engrg., 34, 39, 10.1002/nme.1620340105 Lee, 2005, Insight into finite element shell discretizations by use of the “basic shell mathematical model”, Comput. Struct., 83, 69, 10.1016/j.compstruc.2004.07.005 Hinton, 1986, A family of quadrilateral Mindlin plate elements with substitute shear strain fields, Comput. Struct., 23, 409, 10.1016/0045-7949(86)90232-4 Dvorkin, 1984, A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. Comput., 1, 77, 10.1108/eb023562 Simo, 1990, A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Meth. Engrg., 29, 1595, 10.1002/nme.1620290802 Leino, 1994, On the membrane locking of h-p finite elements in a cylindrical shell problem, Int. J. Numer. Meth. Engrg., 37, 1053, 10.1002/nme.1620370611 Pitkäranta, 1995, Shell deformation states and the finite element method: a benchmark study of cylindrical shells, Comput. Methods Appl. Mech. Engrg., 128, 81, 10.1016/0045-7825(95)00870-X Hakula, 1996, Scale resolution, locking, and high-order finite element modelling shells, Comput. Methods Appl. Mech. Engrg., 133, 157, 10.1016/0045-7825(95)00939-6 Pontaza, 2005, Least-square finite element formulation for shear deformable shells, Comput. Methods Appl. Mech. Engrg., 194, 2464, 10.1016/j.cma.2004.07.041 Büchter, 1992, 3D-extension of nonlinear shell equations based on the enhanced assumed strain concept Sansour, 1995, A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor, Arch. Appl. Mech., 65, 194, 10.1007/s004190050012 Simo, 1990, On a stress resultant geometrically exact shell model. Part IV: variable thickness shells with through-the-thickness stretching, Comput. Methods Appl. Mech. Engrg., 81, 53, 10.1016/0045-7825(90)90143-A Braun, 1994, Nonlinear shell formulations for complete three-dimensional constitutive laws including composites and laminates, Comput. Mech., 15, 1, 10.1007/BF00350285 Büchter, 1994, Three-dimensional extension of nonlinear shell formulation based on the enhanced assumed strain concept, Int. J. Numer. Meth. Engrg., 37, 2551, 10.1002/nme.1620371504 Bischoff, 1997, Shear deformable shell elements for large strains and rotations, Int. J. Numer. Meth. Engrg., 40, 4427, 10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9 Bischoff, 2000, On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation, Int. J. Solids Struct., 37, 6933, 10.1016/S0020-7683(99)00321-2 Brank, 2002, Nonlinear shell problem formulation accounting for through-the-thickness stretching and its finite element implementation, Comput. Struct., 80, 699, 10.1016/S0045-7949(02)00042-1 Krätzig, 1993, Best transverse shearing and stretching shell theory for nonlinear finite element simulations, Comput. Methods Appl. Mech. Engrg., 103, 135, 10.1016/0045-7825(93)90043-W Betsch, 1998, On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells, Comput. Methods Appl. Mech. Engrg., 155, 273, 10.1016/S0045-7825(97)00158-8 Sansour, 2000, Families of 4-nodes and 9-nodes finite elements for a finite deformation shell theory. An assessment of hybrid stress, hybrid strain and enhanced strain elements, Comput. Mech., 24, 435, 10.1007/s004660050003 Balah, 2002, Finite element formulation of a third-order laminated finite rotation shell element, Comput. Struct., 80, 1975, 10.1016/S0045-7949(02)00222-5 Brank, 1995, On implementation of a four node shell element for thin multilayered elastic shells, Comput. Mech., 16, 341, 10.1007/BF00350723 Vu-Quoc, 2003, Optimal solid shells for nonlinear analyses of multilayered composites. I. Statics, Comput. Methods Appl. Mech. Engrg., 192, 975, 10.1016/S0045-7825(02)00435-8 Başar, 1993, Refined shear-deformation models for composite laminates with finite rotations, Int. J. Solids Struct., 30, 2611, 10.1016/0020-7683(93)90102-D Arciniega, 2005, Consistent third-order shell theory with application to composite circular cylinders, AIAA J., 43, 2024, 10.2514/1.6593 Reddy, 2004, Shear deformation plate and shell theories: from Stavsky to present, Mech. Adv. Mater. Struct., 11, 535, 10.1080/15376490490452777 R.A. Arciniega, On a tensor-based finite element model for the analysis of shell structures, Ph.D. Dissertation, Department of Mechanical Engineering, Texas A&M University, 2005. Chadwick, 1999 Naghdi, 1972, Theory of shells and plates, vol. VIa/2 Pietraszkiewicz, 1979 Green, 1968 Naghdi, 1963, Foundations of elastic shell theory, vol. 4 Başar, 2000 Reddy, 2004 Reddy, 2002 Truesdell, 1965, The nonlinear field theories, vol. III/2 Reddy, 2004 Başar, 1993, Finite-rotation theories for composite laminates, Acta Mech., 98, 159, 10.1007/BF01174300 Reddy, 2000, Analysis of functionally graded plates, Int. J. Numer. Meth. Engrg., 47, 663, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8 Praveen, 1998, Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, Int. J. Solids Struct., 35, 4457, 10.1016/S0020-7683(97)00253-9 Reddy, 1998, Thermomechanical analysis of functionally cylinders and plates, J. Thermal Stresses, 21, 593, 10.1080/01495739808956165 D.D. Fox, A geometrically exact shell theory, Ph.D. Dissertation, Applied Mechanics Division, Stanford University, 1990. Hughes, 1978, Consistent linearization in mechanics of solids and structures, Comput. Struct., 8, 391, 10.1016/0045-7949(78)90183-9 Marsden, 1983 Bonet, 1997 Liu, 2002 Reddy, 2005 Bathe, 1996 Sze, 2004, Popular benchmark problems for geometric nonlinear analysis of shells, Fin. Elem. Anal. Des., 40, 1151, 10.1016/j.finel.2003.11.001 Simo, 1990, On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory, Comput. Methods Appl. Mech. Engrg., 79, 21, 10.1016/0045-7825(90)90094-3 Chróścielewski, 1992, Genuinely resultant shell finite elements accounting for geometric and material nonlinearity, Int. J. Numer. Meth. Engrg., 35, 63, 10.1002/nme.1620350105 Massin, 2002, Nine node and seven node thick shell elements with large displacements and rotations, Comput. Struct., 80, 835, 10.1016/S0045-7949(02)00050-0 Timoshenko, 1936 Sanders, 1963, Nonlinear theories for thin shells, Q. Appl. Math., 21, 21, 10.1090/qam/147023 Librescu, 1987, Refined geometrically nonlinear theories of anisotropic laminated shells, Q. Appl. Math., 45, 1, 10.1090/qam/885164 Park, 1995, An efficient assumed strain element model with six DOF per node for geometrically nonlinear shells, Int. J. Numer. Meth. Engrg., 38, 4101, 10.1002/nme.1620382403 Sansour, 1992, An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation, Int. J. Numer. Meth. Engrg., 34, 73, 10.1002/nme.1620340107 Stander, 1989, An assessment of assumed strain methods in finite rotation shell analysis, Engrg. Comput., 6, 58, 10.1108/eb023760 Wagner, 1994, A simple finite rotation formulation for composite shell elements, Engrg. Comput., 11, 145, 10.1108/02644409410799209