Đặc điểm nguồn và đánh giá rủi ro sức khỏe con người đối với nitrate trong nước ngầm của đồng bằng Gangetic giữa, Ấn Độ

Arabian Journal of Geosciences - Tập 12 - Trang 1-12 - 2019
Deepak Kumar1, Anshuman Singh1, Rishi Kumar Jha2, Bibhuti Bhushan Sahoo1, Sunil Kumar Sahoo3, Vivekanand Jha3
1Department of Civil Engineering, National Institute of Technology, Patna, India
2Department of Mathematics, National Institute of Technology Patna, India
3Environmental Assessment Division, Bhabha Atomic Research Centre, Mumbai, India

Tóm tắt

Ô nhiễm nitrate ($ {\mathrm{NO}}_3^{-} $) là một mối quan tâm toàn cầu vì nó ảnh hưởng đến toàn bộ hệ sinh thái: con người, gia súc, kinh tế và môi trường. Nồng độ nitrate tăng cao trong nước ngầm có thể trực tiếp gây ra rủi ro cho dân số. Tổng cộng 156 mẫu nước ngầm đại diện đã được thu thập từ các nguồn nước ngầm như bơm tay và giếng khoan trong khu vực nghiên cứu. Để xác định nguồn gốc của nitrate cùng với các thuộc tính liên quan, các phương pháp thống kê đa biến (phân tích nhân tố (FA), phân tích thành phần chính thưa (SPCA)) đã được sử dụng trong nghiên cứu này. Ngoài ra, mô hình kriging Bayesian thực nghiệm (EBK) đã được sử dụng để dự đoán nitrate tại các vị trí không có máy đo trong khu vực nghiên cứu. Từ phân tích kết quả, phát hiện rằng 5% mẫu nước ngầm vượt quá giới hạn chấp nhận (50 mg l−1) của nitrate như chỉ định bởi Tổ chức Y tế Thế giới (WHO). Thành phần chính đầu tiên (PC) được chỉ định bởi SPCA là yếu tố độ mặn, mà có sự đóng góp đáng kể từ độ dẫn điện, tiếp theo là sulfate. Thành phần chính thứ tư đại diện cho nitrate như một yếu tố và tải trọng dương của nitrate có liên quan mạnh mẽ với clorua, sulfate và canxi. Lớp tải liên quan của nitrate với các thuộc tính chất lượng nước cho thấy rằng mức độ nitrate cao trong nước ngầm có thể do các nguồn bên ngoài phát sinh từ hoạt động nhân tạo. Một kết luận tương tự cũng được rút ra từ phân tích nhân tố, cho thấy rằng SPCA có thể được áp dụng như một phương pháp mới cho hóa lý nước ngầm. Tính toán chỉ số nguy hiểm cho thấy trẻ sơ sinh trong khu vực nghiên cứu có nguy cơ cao hơn so với người lớn và trẻ em.

Từ khóa

#Nitrate #nước ngầm #phân tích nhân tố #phân tích thành phần chính thưa #nguy cơ sức khỏe con người #đồng bằng Gangetic

Tài liệu tham khảo

Adams S, Titus R, Pietersen K, Tredoux G, Harris C (2001) Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J Hydrol 241:91–103 Adimalla N, Li P, Qian H (2018a) Evaluation of groundwater contamination for fluoride and nitrate in semi-arid region of Nirmal Province, South India: a special emphasis on human health risk assessment (HHRA). Hum Ecol Risk Assess Int J:1–18. https://doi.org/10.1080/10807039.2018.1460579 Adimalla N, Vasa SK, Li P (2018b) Evaluation of groundwater quality, Peddavagu in Central Telangana (PCT), South India: an insight of controlling factors of fluoride enrichment. Modeling Earth Syst Environ 4:841–852 Aiuppa A, Bellomo S, Brusca L, d’Alessandro W, Federico C (2003) Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl Geochem 18:863–882 Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Assess Rev 27:220–242 APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC Arabgol R, Sartaj M, Asghari K (2016) Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environ Model Assess 21:71–82 Behera B, Das M (2018) Application of multivariate statistical techniques for the characterization of groundwater quality of Bacheli and Kirandul area, Dantewada district, Chattisgarh. J Geol Soc India 91:76–80 BIS (2012) Indian Standards Specifications for Drinking Water vol IS: 10500. Bureau of Indian Standards, New Delhi Cao Y, Tang C, Song X, Liu C, Zhang Y (2016) Identifying the hydrochemical characteristics of rivers and groundwater by multivariate statistical analysis in the Sanjiang Plain, China. Appl Water Sci 6:169–178 CGWB (2013) Ground Water Information Booklet,Gaya District, Bihar State. Central Ground water Board. Ministry of water Resources (Govt. of India Chang C-C, Tsai S-S, Wu T-N, Yang C-Y (2009) Nitrates in municipal drinking water and non-Hodgkin lymphoma: an ecological cancer case-control study in Taiwan. J Toxic Environ Health A 73:330–338 Chen J, Tang C, Sakura Y, Yu J, Fukushima Y (2005) Nitrate pollution from agriculture in different hydrogeological zones of the regional groundwater flow system in the North China Plain. Hydrogeol J 13:481–492 Chesnaux R, Allen D (2008) Simulating nitrate leaching profiles in a highly permeable vadose zone. Environ Model Assess 13:527–539 Davis J (1973) Statistics and Data Analysis in Geology. Wiley, New York Elisante E, Muzuka AN (2016) Assessment of sources and transformation of nitrate in groundwater on the slopes of Mount Meru, Tanzania. Environ Earth Sci 75:277 Fabro AYR, Ávila JGP, Alberich MVE, Sansores SAC, Camargo-Valero MA (2015) Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl Geogr 65:49–57 Friedman J, Hastie T, Tibshirani R (2009) glmnet: lasso and elastic-net regularized generalized linear models. R package version 1 Ganesh S, Khan F, Ahmed M, Velavendan P, Pandey N, Mudali UK (2012) Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Sci Technol 66:2653–2658 Gao Y, Yu G, Luo C, Zhou P (2012) Groundwater nitrogen pollution and assessment of its health risks: a case study of a typical village in rural-urban continuum, China. PLoS One 7:e33982 Gascoyne M (1989) High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl Geochem 4:577–591 Gribov A, Krivoruchko K (2012) New flexible non-parametric data transformation for trans-gaussian kriging. In: Geostatistics Oslo 2012. Springer, pp 51–65 Gu B, Ge Y, Chang SX, Luo W, Chang J (2013) Nitrate in groundwater of China: sources and driving forces. Glob Environ Chang 23:1112–1121 He S, Wu J (2018) Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi County, Northwest China. Expo Health. https://doi.org/10.1007/s12403-018-0289-7 He X, Wu J, He S (2018) Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Hum Ecol Risk Assess Int J:1–20. https://doi.org/10.1080/10807039.2018.1531693 Jayakumar R, Siraz L (1997) Factor analysis in hydrogeochemistry of coastal aquifers–a preliminary study. Environ Geol 31:174–177 Jolliffe IT (1986) Principal component analysis and factor analysis. In: Principal component analysis. Springer, pp 115–128 Kaown D, Koh D-C, Mayer B, Lee K-K (2009) Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agric Ecosyst Environ 132:223–231 Kim H-S, Park S-R (2016) Hydrogeochemical characteristics of groundwater highly polluted with nitrate in an agricultural area of Hongseong, Korea. Water 8:345 Kim K-H, Yun S-T, Mayer B, Lee J-H, Kim T-S, Kim H-K (2015) Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model. Agric Ecosyst Environ 199:369–381 Krivoruchko K (2012) Empirical bayesian kriging ArcUser Fall:6–10 Krivoruchko K, Butler K (2013) Unequal probability-based spatial mapping. Esri, Redlands Availableonline:http://wwwesricom/esrinews/arcuser/spring2013/~/media/Files/Pdfs/news/arcuser/0313/unequal pdf Kumar M, Ramanathan A, Rao M, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1039 Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36:693–712 Li P, Li X, Meng X, Li M, Zhang Y (2016) Appraising groundwater quality and health risks from contamination in a semiarid region of northwest China. Expo Health 8:361–379 Li P, Feng W, Xue C, Tian R, Wang S (2017) Spatiotemporal variability of contaminants in lake water and their risks to human health: a case study of the Shahu Lake tourist area, northwest China. Expo Health 9:213–225 Li P, He X, Li Y, Xiang G (2018) Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan, Northwest China. Expo Health. https://doi.org/10.1007/s12403-018-0278-x Liao L, He JT, Zeng Y, et al. 2016. A study of nitrate background level of shallow groundwater in the Liujiang Basin. Geol in China 43(2):671–82 Madison RJ (1984) Overview of the occurrence of nitrate in ground water of the United States. National Water Summary 1984-Water-Quality Issues. US Geol Surv Water-Supply Paper 2275:93–103 Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background–can we calculate it? Environ Geol 39:990–1000 Nolan BT, Hitt KJ (2006) Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environ Sci Technol 40:7834–7840 Revelle W (2011) An overview of the psych package. Department of Psychology Northwestern University Accessed on March 3:2012 Su X, Wang H, Zhang Y (2013) Health risk assessment of nitrate contamination in groundwater: a case study of an agricultural area in Northeast China. Water Resour Manag 27:3025–3034 Wang H, Gu H, Lan S, Wang M, Chi B (2018) Human health risk assessment and sources analysis of nitrate in shallow groundwater of the Liujiang basin, China. Hum Ecol Risk Assess Int J:1–17 WHO (2008) Guidelines for drinking-water quality, third edition, incorporating first and second addenda. Geneva WHO (2011) Guidelines for drinking-water quality. WHO Chronicle 38:104–108 Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health 8:311–329 Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7:3973–3982 Zhai Y, Lei Y, Wu J, Teng Y, Wang J, Zhao X, Pan X (2017a) Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environ Sci Pollut Res 24:3640–3653 Zhai Y, Zhao X, Teng Y, Li X, Zhang J, Wu J, Zuo R (2017b) Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ Saf 137:130–142 Zhang X, Xu Z, Sun X, Dong W, Ballantine D (2013) Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010. J Environ Sci 25:1007–1014 Zhang Y, Wu J, Xu B (2018) Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ Earth Sci 77:273 Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15:265–286