Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning

Geoscience Frontiers - Tập 12 Số 1 - Trang 425-439 - 2021
Shuo Zheng1, Yuxin Zhu1, Dianqing Li1, Zi-Jun Cao1, Qin-Xuan Deng1, Kok‐Kwang Phoon2
1State Key Laboratory of Water Resources and Hydropower Engineering Science, Institute of Engineering Risk and Disaster Prevention, Wuhan University, 299 Bayi Road, Wuhan, 430072, China
2Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A, #07-03, 1 Engineering Drive 2, Singapore 117576, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdulla, 2019, Optimised multivariate Gaussians for probabilistic subsurface characterisation, Georisk, 13, 303

Baecher, 2005

Barnett, 1994

Bauder, 2017, Multivariate outlier detection in medicare claims payments applying probabilistic programming methods, Health Serv. Outcome Res. Methodol., 17, 256, 10.1007/s10742-017-0172-1

Beck, 2013, Prior and posterior robust stochastic predictions for dynamical systems using probability logic, Int. J. Uncertain. Quantification, 3, 271, 10.1615/Int.J.UncertaintyQuantification.2012003641

Cao, 2014, Bayesian model comparison and selection of spatial correlation functions for soil parameters, Struct. Saf., 49, 10, 10.1016/j.strusafe.2013.06.003

Cao, 2016, Quantification of prior knowledge in geotechnical site characterization, Eng. Geol., 203, 107, 10.1016/j.enggeo.2015.08.018

Chandola, 2009, Anomaly detection: a survey, ACM Comput. Surv., 41, 15, 10.1145/1541880.1541882

Ching, 2017, Characterizing uncertain site-specific trend function by sparse Bayesian learning, J. Eng. Mech., 143, 10.1061/(ASCE)EM.1943-7889.0001240

Ching, 2019, Constructing site-specific multivariate probability distribution model using bayesian machine learning, J. Eng. Mech., 145, 10.1061/(ASCE)EM.1943-7889.0001537

Chow, 2002, Parzen-window network intrusion detectors, vol. 4, 385

Desforges, 1998, Applications of probability density estimation to the detection of abnormal conditions in engineering, Proceedings of the Institute of the Mechanical Engineers, 212, 687

Duncan, 2000, Factors of safety and reliability in geotechnical engineering, J. Geotech. Geoenviron. Eng., 126, 307, 10.1061/(ASCE)1090-0241(2000)126:4(307)

Egan, 1998, Outlier detection in multivariate analytical chemical data, Anal. Chem., 70, 2372, 10.1021/ac970763d

Endler, 1998, Intrusion detection: applying machine learning to Solaris audit data, 268

Eskin, 2000, Anomaly detection over noisy data using learned probability distributions, 255

Gelman, 2006, Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper), Bayesian analysis, 1, 515, 10.1214/06-BA117A

Gelman, 2013

Geman, 1984, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., 721, 10.1109/TPAMI.1984.4767596

Gilks, 1996

Griffiths, 2008

Han, 2001

Hawkins, 1980

Hamlet, 2017, An incremental and approximate local outlier probability algorithm for intrusion detection and its evaluation, Journal of Cyber Security Technology, 1, 75, 10.1080/23742917.2016.1226651

Huang, 2013, Simple marginally noninformative prior distributions for covariance matrices, Bayesian Analysis, 8, 439, 10.1214/13-BA815

Huang, 2019, Back analysis of settlement of Teven Road trial embankment using Bayesian updating, Georisk, 13, 320

Laurikkala, 2000, Informal identification of outliers in medical data, vol. 1, 20

Li, 2019, Reliability analysis of unsaturated slope stability considering SWCC model selection and parameter uncertainties, Eng. Geol., 260, 105207, 10.1016/j.enggeo.2019.105207

Mahalanobis, 1936, On the generalized distance in statistics, Proc. Natl. Inst. Sci. India, 2, 49

Mark, 1985, Qualitative near-infrared reflectance analysis using Mahalanobis distances, Anal. Chem., 57, 1449, 10.1021/ac00284a061

Mu, 2014, Novel outlier-resistant extended Kalman filter for robust online structural identification, J. Eng. Mech., 141, 10.1061/(ASCE)EM.1943-7889.0000810

Ohtsubo, 2007, Depositional geochemistry and geotechnical properties of marine clays in the Ariake Bay area, Japan, vol. 3, 1893

Papadimitriou, 2001, Updating robust reliability using structural test data, Probabilist. Eng. Mech., 16, 103, 10.1016/S0266-8920(00)00012-6

Phoon, 1999, Evaluation of geotechnical property variability, Can. Geotech. J., 36, 625, 10.1139/t99-039

Rousseeuw, 1991, Tutorial to robust statistics, J. Chemometr., 5, 1, 10.1002/cem.1180050103

Rousseeuw, 1987

Rousseeuw, 1990, Unmasking multivariate outliers and leverage points, Journal of American Statistical Association, 85, 633, 10.1080/01621459.1990.10474920

Solberg, 2005, Detection of outliers in reference distributions: performance of Horn’s algorithm, Clin. Chem., 51, 2326, 10.1373/clinchem.2005.058339

Tiwari, 1994, The Kalman filter model and Bayesian outlier detection for time series analysis of BOD data, Ecol. Model., 73, 159, 10.1016/0304-3800(94)90104-X

Wang, 2013, Probabilistic characterization of Young’s modulus of soil using equivalent samples, Eng. Geol., 159, 106, 10.1016/j.enggeo.2013.03.017

Wang, 2016, Bayesian perspective on geotechnical variability and site characterization, Eng. Geol., 203, 117, 10.1016/j.enggeo.2015.08.017

Yamanishi, 2004, Online unsupervised outlier detection using finite mixtures with discounting learning algorithms, Data Min. Knowl. Discov., 8, 275, 10.1023/B:DAMI.0000023676.72185.7c

Ye, 2001, An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems, Qual. Reliab. Eng. Int., 17, 105, 10.1002/qre.392

Yuen, 2017, Outlier detection and robust regression for correlated data, Comput. Methods Appl. Mech. Eng., 313, 632, 10.1016/j.cma.2016.10.004

Yong, 2018, Determining the maximum sampling interval in rock joint roughness measurements using Fourier series, Int. J. Rock Mech. Min. Sci., 101, 78, 10.1016/j.ijrmms.2017.11.008

Yuen, 2012, A novel probabilistic method for robust parametric identification and outlier detection, Probabilist. Eng. Mech., 30, 48, 10.1016/j.probengmech.2012.06.002

Zhang, 2015, Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines, Eng. Geol., 188, 29, 10.1016/j.enggeo.2015.01.009

Zhang, 2016, Multivariate adaptive regression splines and neural network models for prediction of pile drivability, Geosci. Front., 7, 45, 10.1016/j.gsf.2014.10.003