Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

Chemical Society Reviews - Tập 44 Số 8 - Trang 2060-2086
Yan Jiao1,2,3,4, Yao Zheng1,2,3,4, Mietek Jaroniec5,6, Shi Zhang Qiao1,2,3,7,8
1Adelaide
2Australia
3School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
4University of Adelaide
5Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, USA
6Kent State University
7School of Materials Science and Engineering
8School of Materials Science and Engineering, Tianjin University, Tianjin, China

Tóm tắt

This review provides insights into theoretical and experimental electrochemistry toward a better understanding of a series of key energy conversion reactions.

Từ khóa


Tài liệu tham khảo

Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Steele, 2001, Nature, 414, 345, 10.1038/35104620

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Bruce, 2012, Nat. Mater., 11, 19, 10.1038/nmat3191

Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J

Bockris, 2008, Int. J. Hydrogen Energy, 33, 2129, 10.1016/j.ijhydene.2008.02.030

Chu, 2012, Nature, 488, 294, 10.1038/nature11475

S. Trasatti , Electrodes of Conductive Metallic Oxides, Elsevier, 1988

H. Wolfschmidt , O.Paschos and U.Stimming, Fuel Cell Science, John Wiley & Sons, Inc., 2010, pp. 1–70

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Marković, 2002, Surf. Sci. Rep., 45, 117, 10.1016/S0167-5729(01)00022-X

Nichols, 1988, J. Electroanal. Chem. Interfacial Electrochem., 243, 445, 10.1016/0022-0728(88)80047-0

Gattrell, 2006, J. Electroanal. Chem., 594, 1, 10.1016/j.jelechem.2006.05.013

Y. Hori , in Modern Aspects of Electrochemistry, ed. C. Vayenas, R. White and M. Gamboa-Aldeco, Springer, New York, 2008, vol. 42, pp. 89–189

Lopez, 2004, J. Catal., 223, 232, 10.1016/j.jcat.2004.01.001

Westbrook, 1981, Combust. Sci. Technol., 27, 31, 10.1080/00102208108946970

Debe, 2012, Nature, 486, 43, 10.1038/nature11115

Marković, 2001, Fuel Cells, 1, 105, 10.1002/1615-6854(200107)1:2<105::AID-FUCE105>3.0.CO;2-9

Trasatti, 1991, Electrochim. Acta, 36, 225, 10.1016/0013-4686(91)85244-2

Antolini, 2009, Energy Environ. Sci., 2, 915, 10.1039/b820837a

Antolini, 2014, ACS Catal., 4, 1426, 10.1021/cs4011875

P. Strasser , Electrocatalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 259–292

S. Mukerjee and T.Arruda, in Theory and Experiment in Electrocatalysis, ed. P. B. Balbuena and V. R. Subramanian, Springer, New York, 2010, vol. 50, pp. 503–572

S. Axnanda , K.Cummins, D. W.Goodman and M.Soriaga, in Theory and Experiment in Electrocatalysis, ed. P. B. Balbuena and V. R. Subramanian, Springer, New York, 2010, vol. 50, pp. 1–23

Q. A. Acton , Advances in Imaging Technology Research and Application: 2013 Edition, Scholarly Editions, 2013

R. J. Nichols and S. J.Higgins, Electrocatalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 99–136

D. S. Sholl and J. A.Steckel, Density Functional Theory, John Wiley & Sons, Inc., 2009, pp. 83–112

Nørskov, 2009, Nat. Chem., 1, 37, 10.1038/nchem.121

Nørskov, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 937, 10.1073/pnas.1006652108

Nørskov, 2008, Chem. Soc. Rev., 37, 2163, 10.1039/b800260f

Anderson, 2005, J. Phys. Chem. B, 109, 1198, 10.1021/jp047468z

Greeley, 2012, Energy Environ. Sci., 5, 9246, 10.1039/c2ee21754f

Calle-Vallejo, 2012, Electrochim. Acta, 84, 3, 10.1016/j.electacta.2012.04.062

C. Coutanceau , S.Baranton and C.Lamy, in Theory and Experiment in Electrocatalysis, ed. P. B. Balbuena and V. R. Subramanian, Springer, New York, 2010, vol. 50, pp. 397–501

Stamenkovic, 2006, Angew. Chem., Int. Ed., 45, 2897, 10.1002/anie.200504386

Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367

Zhang, 2005, Angew. Chem., Int. Ed., 44, 2132, 10.1002/anie.200462335

Zhang, 2005, J. Am. Chem. Soc., 127, 12480, 10.1021/ja053695i

A. J. Bard and L. R.Faulkner, Electrochemical methods: fundamentals and applications, Wiley, 1980

Barbara, 1996, J. Phys. Chem., 100, 13148, 10.1021/jp9605663

Holewinski, 2012, J. Electrochem. Soc., 159, H864, 10.1149/2.022211jes

Pinaud, 2013, Energy Environ. Sci., 6, 1983, 10.1039/c3ee40831k

L. Huang , Z.-Y.Zhou, N.Tian and S.-G.Sun, Electrocatalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 221–258

J. P. N. Ross , V.Radmilovic and N. M.Markovi, Catalysis and Electrocatalysis at Nanoparticle Surfaces, CRC Press, 2003

Pozio, 2002, J. Power Sources, 105, 13, 10.1016/S0378-7753(01)00921-1

Gasteiger, 1994, J. Phys. Chem., 98, 617, 10.1021/j100053a042

Green, 2002, J. Phys. Chem. B, 106, 1036, 10.1021/jp0131931

Łosiewicz, 2010, J. Electroanal. Chem., 649, 198, 10.1016/j.jelechem.2010.04.002

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Yu, 2011, J. Catal., 282, 183, 10.1016/j.jcat.2011.06.015

Zhang, 2011, J. Phys. Chem. C, 115, 11170, 10.1021/jp201991j

Skulason, 2007, Phys. Chem. Chem. Phys., 9, 3241, 10.1039/B700099E

Liang, 2012, Angew. Chem., Int. Ed., 51, 11496, 10.1002/anie.201206720

Zhang, 2012, Langmuir, 28, 7542, 10.1021/la2043262

Zheng, 2014, ACS Nano, 8, 5290, 10.1021/nn501434a

Zheng, 2011, J. Am. Chem. Soc., 133, 20116, 10.1021/ja209206c

R. G. Gilbert and S. C.Smith, Theory of unimolecular and recombination reactions, 1990

Dau, 2010, ChemCatChem, 2, 724, 10.1002/cctc.201000126

Sabatier, 1911, Ber. Dtsch. Chem. Ges., 44, 1984, 10.1002/cber.19110440303

Kim, 2014, Sci. Rep., 4, 4225, 10.1038/srep04225

Kattel, 2012, J. Phys. Chem. C, 116, 17378, 10.1021/jp3044708

Lee, 2010, Phys. Rev. B: Condens. Matter Mater. Phys., 82, 081101, 10.1103/PhysRevB.82.081101

Wu, 2002, J. Chem. Phys., 116, 515, 10.1063/1.1424928

Risthaus, 2013, J. Chem. Theory Comput., 9, 1580, 10.1021/ct301081n

Rodriguez-Reyes, 2014, J. Am. Chem. Soc., 136, 13333, 10.1021/ja506447y

Delley, 1990, J. Chem. Phys., 92, 508, 10.1063/1.458452

Delley, 2000, J. Chem. Phys., 113, 7756, 10.1063/1.1316015

M. J. Frisch , G. W.Trucks, H. B.Schlegel, G. E.Scuseria, M. A.Robb and J. R.Cheeseman, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2009

Alberty, 1969, J. Biol. Chem., 244, 3290, 10.1016/S0021-9258(18)93127-3

Skulason, 2010, J. Phys. Chem. C, 114, 18182, 10.1021/jp1048887

Tomasi, 2005, Chem. Rev., 105, 2999, 10.1021/cr9904009

Jiao, 2014, J. Am. Chem. Soc., 136, 4394, 10.1021/ja500432h

Fillol, 2011, Nat. Chem., 3, 807, 10.1038/nchem.1140

Sheppard, 2008, J. Chem. Phys., 128, 134106, 10.1063/1.2841941

Henkelman, 2000, J. Chem. Phys., 113, 9901, 10.1063/1.1329672

Halgren, 1977, Chem. Phys. Lett., 49, 225, 10.1016/0009-2614(77)80574-5

Y. Jiao , M.Hankel, A.Du and S. C.Smith, Graphene Chemistry, John Wiley & Sons, Ltd, 2013, pp. 129–151

Filhol, 2006, Angew. Chem., Int. Ed., 45, 402, 10.1002/anie.200502540

Otani, 2006, Phys. Rev. B: Condens. Matter Mater. Phys., 73, 115407, 10.1103/PhysRevB.73.115407

Parsons, 1958, Trans. Faraday Soc., 54, 1053, 10.1039/tf9585401053

Horiuti, 1935, Acta Physicochim. URSS, 2, 505

Greeley, 2009, J. Phys. Chem. C, 113, 4932, 10.1021/jp808945y

Trasatti, 1984, Electrochim. Acta, 29, 1503, 10.1016/0013-4686(84)85004-5

Rossmeisl, 2007, J. Electroanal. Chem., 607, 83, 10.1016/j.jelechem.2006.11.008

Rossmeisl, 2005, Chem. Phys., 319, 178, 10.1016/j.chemphys.2005.05.038

Man, 2011, ChemCatChem, 3, 1159, 10.1002/cctc.201000397

Kibler, 2008, Electrochim. Acta, 53, 6824, 10.1016/j.electacta.2008.01.097

Trasatti, 1972, J. Electroanal. Chem. Interfacial Electrochem., 39, 163, 10.1016/S0022-0728(72)80485-6

S. Trasatti , in Handbook of Fuel Cells: Fundamentals, Technology, Applications, ed. W. Vielstich, A. Lamm and H. A. Gasteiger, John Wiley & Sons, Inc., Chichester, NY, 2003, vol. 2, pp. 88–92

Esposito, 2012, J. Am. Chem. Soc., 134, 3025, 10.1021/ja208656v

Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783

Liu, 2005, J. Am. Chem. Soc., 127, 14871, 10.1021/ja0540019

Abild-Pedersen, 2007, Phys. Rev. Lett., 99, 016105, 10.1103/PhysRevLett.99.016105

Fernández, 2008, Angew. Chem., Int. Ed., 47, 4683, 10.1002/anie.200705739

Stephens, 2012, Energy Environ. Sci., 5, 6744, 10.1039/c2ee03590a

Calle-Vallejo, 2011, Phys. Chem. Chem. Phys., 13, 15639, 10.1039/c1cp21228a

B. Hammer and J. K.Nørskov, in Adv. Catal., ed. H. K. Bruce, C. Gates, Academic Press, 2000, vol. 45, pp. 71–129

Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858

Greeley, 2004, Nat. Mater., 3, 810, 10.1038/nmat1223

Vojvodic, 2011, Science, 334, 1355, 10.1126/science.1215081

Cheon, 2014, J. Am. Chem. Soc., 136, 8875, 10.1021/ja503557x

Hammer, 1995, Nature, 376, 238, 10.1038/376238a0

Greeley, 2002, Annu. Rev. Phys. Chem., 53, 319, 10.1146/annurev.physchem.53.100301.131630

Vojvodic, 2009, Phys. Rev. Lett., 103, 146103, 10.1103/PhysRevLett.103.146103

Lima, 2006, J. Phys. Chem. C, 111, 404, 10.1021/jp065181r

Greeley, 2006, Nat. Mater., 5, 909, 10.1038/nmat1752

Rossmeisl, 2008, Faraday Discuss., 140, 337, 10.1039/B802129E

Kibler, 2005, Angew. Chem., Int. Ed., 44, 2080, 10.1002/anie.200462127

Jiang, 2014, Phys. Chem. Chem. Phys., 16, 20360, 10.1039/C4CP03151B

Ruban, 1997, J. Mol. Catal. A: Chem., 115, 421, 10.1016/S1381-1169(96)00348-2

Mavrikakis, 1998, Phys. Rev. Lett., 81, 2819, 10.1103/PhysRevLett.81.2819

Quaino, 2011, Adv. Phys. Chem., 2011, 14, 10.1155/2011/851640

Wakisaka, 2006, J. Phys. Chem. B, 110, 23489, 10.1021/jp0653510

Ballhausen, 1962, Inorg. Chem., 1, 111, 10.1021/ic50001a022

Grimaud, 2013, Nat. Commun., 4

Foster, 1980, J. Am. Chem. Soc., 102, 7211, 10.1021/ja00544a007

Yeager, 1986, J. Mol. Catal., 38, 5, 10.1016/0304-5102(86)87045-6

Sánchez-Sánchez, 2009, Anal. Chem., 81, 8094, 10.1021/ac901291v

C. Song and J.Zhang, in PEM Fuel Cell Electrocatalysts and Catalyst Layers, ed. J. Zhang, Springer, London, 2008, pp. 89–134

Yan, 2012, J. Appl. Phys., 112

Bocquet, 1999, Phys. Rev. B: Condens. Matter Mater. Phys., 59, 15437, 10.1103/PhysRevB.59.15437

Ou, 2009, J. Phys. Chem. C, 113, 20657, 10.1021/jp9059505

Alducin, 2008, J. Chem. Phys., 129, 224702, 10.1063/1.3012354

Gomez-Marin, 2014, Catal. Sci. Technol., 4, 1685, 10.1039/c3cy01049j

Gómez-Marín, 2013, Beilstein J. Nanotechnol., 4, 956, 10.3762/bjnano.4.108

Tripković, 2014, Catal. Lett., 144, 380, 10.1007/s10562-013-1188-y

Sánchez-Sánchez, 2010, J. Am. Chem. Soc., 132, 5622, 10.1021/ja100922h

Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l

Guo, 2013, Angew. Chem., Int. Ed., 52, 8526, 10.1002/anie.201207186

Rabis, 2012, ACS Catal., 2, 864, 10.1021/cs3000864

Gasteiger, 2005, Appl. Catal., B, 56, 9, 10.1016/j.apcatb.2004.06.021

Morozan, 2011, Energy Environ. Sci., 4, 1238, 10.1039/c0ee00601g

Wu, 2013, Acc. Chem. Res., 46, 1848, 10.1021/ar300359w

Zhang, 2010, Nano Lett., 10, 638, 10.1021/nl903717z

Paffett, 1987, J. Electroanal. Chem. Interfacial Electrochem., 220, 269, 10.1016/0022-0728(87)85114-8

Wang, 2011, ACS Catal., 1, 1355, 10.1021/cs200328z

Yano, 2007, Langmuir, 23, 6438, 10.1021/la070078u

Feng, 2011, Phys. Chem. Chem. Phys., 13, 3863, 10.1039/c0cp01612h

Kang, 2010, J. Am. Chem. Soc., 132, 7568, 10.1021/ja100705j

Zhang, 2014, J. Am. Chem. Soc., 136, 7734, 10.1021/ja5030172

Wang, 2012, J. Phys. Chem. Lett., 3, 1668, 10.1021/jz300563z

Bing, 2010, Chem. Soc. Rev., 39, 2184, 10.1039/b912552c

Wang, 2013, Nat. Mater., 12, 81, 10.1038/nmat3458

Jang, 2013, Sci. Rep., 3

Wang, 2012, Nano Lett., 12, 5230, 10.1021/nl302404g

Cui, 2013, Nat. Mater., 12, 765, 10.1038/nmat3668

Wang, 2011, J. Am. Chem. Soc., 133, 14396, 10.1021/ja2047655

Gan, 2012, Nano Lett., 12, 5423, 10.1021/nl302995z

Lim, 2009, Science, 324, 1302, 10.1126/science.1170377

Oezaslan, 2013, J. Phys. Chem. Lett., 4, 3273, 10.1021/jz4014135

Sasaki, 2010, Angew. Chem., 122, 8784, 10.1002/ange.201004287

Yang, 2010, Chem. Mater., 22, 4712, 10.1021/cm101090p

Oezaslan, 2012, J. Electrochem. Soc., 159, B444, 10.1149/2.106204jes

Liu, 2012, J. Phys. Chem. C, 116, 7848, 10.1021/jp300672h

Oezaslan, 2012, J. Electrochem. Soc., 159, B394, 10.1149/2.075204jes

Oezaslan, 2011, J. Am. Chem. Soc., 134, 514, 10.1021/ja2088162

Mayrhofer, 2009, Angew. Chem., Int. Ed., 48, 3529, 10.1002/anie.200806209

Andersson, 2009, J. Am. Chem. Soc., 131, 2404, 10.1021/ja8089087

Stamenković, 2002, J. Phys. Chem. B, 106, 11970, 10.1021/jp021182h

Stamenkovic, 2007, Nat. Mater., 6, 241, 10.1038/nmat1840

Stamenkovic, 2006, J. Am. Chem. Soc., 128, 8813, 10.1021/ja0600476

Stamenkovic, 2007, Science, 315, 493, 10.1126/science.1135941

Katsounaros, 2014, Angew. Chem., Int. Ed., 53, 102, 10.1002/anie.201306588

Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d

Jasinski, 1964, Nature, 201, 1212, 10.1038/2011212a0

Zagal, 1992, Coord. Chem. Rev., 119, 89, 10.1016/0010-8545(92)80031-L

U. Kramm , P.Bogdanoff and S.Fiechter, in Fuel Cells, ed. K.-D. Kreuer, Springer, New York, 2013, pp. 519–575

J. Zagal , M.Páez and J. F.Silva, in N4-Macrocyclic Metal Complexes, ed. J. Zagal, F. Bedioui and J.-P. Dodelet, Springer, New York, 2006, pp. 41–82

Wang, 2005, J. Power Sources, 152, 1, 10.1016/j.jpowsour.2005.05.098

Lefèvre, 2003, Electrochim. Acta, 48, 2749, 10.1016/S0013-4686(03)00393-1

Pylypenko, 2008, Electrochim. Acta, 53, 7875, 10.1016/j.electacta.2008.05.047

van Veen, 1979, Electrochim. Acta, 24, 921, 10.1016/0013-4686(79)87088-7

Zagal, 1992, J. Electroanal. Chem., 339, 13, 10.1016/0022-0728(92)80442-7

Sun, 2014, Phys. Chem. Chem. Phys., 16, 13733, 10.1039/C4CP00037D

Zagal, 2010, Coord. Chem. Rev., 254, 2755, 10.1016/j.ccr.2010.05.001

Chen, 2009, J. Phys. Chem. C, 113, 20689, 10.1021/jp906408y

Wang, 2008, Mol. Simul., 34, 1051, 10.1080/08927020802258690

He, 2012, J. Phys. Chem. C, 116, 16038, 10.1021/jp303312r

Bezerra, 2008, Electrochim. Acta, 53, 4937, 10.1016/j.electacta.2008.02.012

Lefèvre, 2000, J. Phys. Chem. B, 104, 11238, 10.1021/jp002444n

Lefèvre, 2009, Science, 324, 71, 10.1126/science.1170051

Wu, 2011, Science, 332, 443, 10.1126/science.1200832

Kramm, 2012, Phys. Chem. Chem. Phys., 14, 11673, 10.1039/c2cp41957b

Lefèvre, 2002, J. Phys. Chem. B, 106, 8705, 10.1021/jp020267f

Jaouen, 2011, Energy Environ. Sci., 4, 114, 10.1039/C0EE00011F

Jaouen, 2009, ACS Appl. Mater. Interfaces, 1, 1623, 10.1021/am900219g

Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z

Byon, 2011, Chem. Mater., 23, 3421, 10.1021/cm2000649

Kattel, 2013, J. Mater. Chem. A, 1, 10790, 10.1039/c3ta12142a

Kattel, 2013, Phys. Chem. Chem. Phys., 15, 148, 10.1039/C2CP42609A

Kattel, 2014, Phys. Chem. Chem. Phys., 16, 13800, 10.1039/c4cp01634c

Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Liang, 2012, J. Am. Chem. Soc., 134, 15849, 10.1021/ja305623m

Liang, 2012, J. Am. Chem. Soc., 134, 3517, 10.1021/ja210924t

Deng, 2013, Angew. Chem., Int. Ed., 52, 371, 10.1002/anie.201204958

Wang, 2014, Energy Environ. Sci., 7, 576, 10.1039/c3ee43463j

Zheng, 2012, Small, 8, 3550, 10.1002/smll.201200861

Paraknowitsch, 2013, Energy Environ. Sci., 6, 2839, 10.1039/c3ee41444b

Kong, 2014, Chem. Soc. Rev., 43, 2841, 10.1039/C3CS60401B

Zhou, 2014, Adv. Energy Mater., 4, 1301523, 10.1002/aenm.201301523

Sun, 2011, Energy Environ. Sci., 4, 1113, 10.1039/c0ee00683a

Zheng, 2012, Energy Environ. Sci., 5, 6717, 10.1039/c2ee03479d

Lyth, 2009, J. Phys. Chem. C, 113, 20148, 10.1021/jp907928j

Uosaki, 2014, J. Am. Chem. Soc., 136, 6542, 10.1021/ja500393g

Kattel, 2014, J. Mater. Chem. A, 2, 10273, 10.1039/c4ta01460j

Zheng, 2013, Angew. Chem., Int. Ed., 52, 3110, 10.1002/anie.201209548

Yu, 2012, J. Phys. Chem. Lett., 3, 2863, 10.1021/jz3011833

Choi, 2012, ACS Nano, 6, 7084, 10.1021/nn3021234

Mom, 2014, J. Phys. Chem. C, 118, 4095, 10.1021/jp409373c

M. Risch , J.Suntivich and Y.Shao-Horn, in Encyclopedia of Applied Electrochemistry, ed. G. Kreysa, K.-I. Ota and R. Savinell, Springer, New York, 2014, pp. 1475–1480

Liao, 2012, J. Am. Chem. Soc., 134, 13296, 10.1021/ja301567f

Damjanovic, 1966, J. Electrochem. Soc., 113, 739, 10.1149/1.2424104

Danilovic, 2014, J. Phys. Chem. Lett., 5, 2474, 10.1021/jz501061n

Frydendal, 2014, ChemElectroChem, 1, 2075, 10.1002/celc.201402262

Lee, 2012, J. Phys. Chem. Lett., 3, 399, 10.1021/jz2016507

Kötz, 1984, J. Electroanal. Chem. Interfacial Electrochem., 172, 211, 10.1016/0022-0728(84)80187-4

Mamaca, 2012, Appl. Catal., B, 111–112, 376, 10.1016/j.apcatb.2011.10.020

Kötz, 1985, J. Electrochem. Soc., 132, 103, 10.1149/1.2113735

Kötz, 1986, Electrochim. Acta, 31, 1311, 10.1016/0013-4686(86)80153-0

Yeo, 1981, J. Electrochem. Soc., 128, 1900, 10.1149/1.2127761

Hutchings, 1984, J. Mater. Sci., 19, 3987, 10.1007/BF00980762

Deng, 2014, ACS Catal., 4, 3701, 10.1021/cs500713d

McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p

Jiao, 2010, Energy Environ. Sci., 3, 1018, 10.1039/c002074e

Yeo, 2011, J. Am. Chem. Soc., 133, 5587, 10.1021/ja200559j

Mattioli, 2013, J. Am. Chem. Soc., 135, 15353, 10.1021/ja401797v

Bajdich, 2013, J. Am. Chem. Soc., 135, 13521, 10.1021/ja405997s

García-Mota, 2012, J. Phys. Chem. C, 116, 21077, 10.1021/jp306303y

Ramírez, 2014, J. Phys. Chem. C, 118, 14073, 10.1021/jp500939d

Gorlin, 2010, J. Am. Chem. Soc., 132, 13612, 10.1021/ja104587v

Su, 2012, Phys. Chem. Chem. Phys., 14, 14010, 10.1039/c2cp40841d

Jasem, 1979, J. Electrochem. Soc., 126, 1353, 10.1149/1.2129276

Fiori, 1982, Int. J. Hydrogen Energy, 7, 489, 10.1016/0360-3199(82)90106-9

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c

Bockris, 1984, J. Electrochem. Soc., 131, 290, 10.1149/1.2115565

Barber, 2009, Chem. Soc. Rev., 38, 185, 10.1039/B802262N

Hurst, 2005, Coord. Chem. Rev., 249, 313, 10.1016/j.ccr.2004.06.017

Yagi, 2000, Chem. Rev., 101, 21, 10.1021/cr980108l

Concepcion, 2009, Acc. Chem. Res., 42, 1954, 10.1021/ar9001526

Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987

Chen, 2014, Adv. Mater., 26, 2925, 10.1002/adma.201305608

Cheng, 2015, Appl. Catal., B, 163, 96, 10.1016/j.apcatb.2014.07.049

Zhao, 2013, Nat. Commun., 4

Ma, 2014, Angew. Chem., Int. Ed., 53, 7281, 10.1002/anie.201403946

Tian, 2014, Small, 10, 2251, 10.1002/smll.201303715

Tian, 2014, ChemSusChem, 7, 2125, 10.1002/cssc.201402118

Li, 2014, J. Catal., 314, 66, 10.1016/j.jcat.2014.03.011

Tian, 2014, Adv. Funct. Mater., 24, 5956, 10.1002/adfm.201401264

Meng, 2014, J. Am. Chem. Soc., 136, 11452, 10.1021/ja505186m

Zhao, 2014, J. Am. Chem. Soc., 136, 7551, 10.1021/ja502532y

Masa, 2014, Angew. Chem., Int. Ed., 53, 8508, 10.1002/anie.201402710

Li, 2013, Nat. Commun., 4, 1805, 10.1038/ncomms2812

Mao, 2014, Energy Environ. Sci., 7, 609, 10.1039/C3EE42696C

Wang, 2014, ACS Appl. Mater. Interfaces, 6, 10172, 10.1021/am5014369

Risch, 2014, J. Am. Chem. Soc., 136, 5229, 10.1021/ja5009954

Baran, 2013, J. Am. Chem. Soc., 136, 1320, 10.1021/ja4060299

A. Lasia , in Handbook of Fuel Cells, John Wiley & Sons, Ltd, 2010

Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8

Marković, 1997, J. Phys. Chem. B, 101, 5405, 10.1021/jp970930d

Markovica, 1996, J. Chem. Soc., Faraday Trans., 92, 3719, 10.1039/FT9969203719

Zhang, 2007, Electrochim. Acta, 53, 982, 10.1016/j.electacta.2007.08.014

Durst, 2014, Energy Environ. Sci., 7, 2255, 10.1039/C4EE00440J

Esposito, 2011, Energy Environ. Sci., 4, 3900, 10.1039/c1ee01851e

Kelly, 2012, Chem. Soc. Rev., 41, 8021, 10.1039/c2cs35165j

Chen, 2008, Surf. Sci. Rep., 63, 201, 10.1016/j.surfrep.2008.02.001

Kitchin, 2004, Phys. Rev. Lett., 93, 156801, 10.1103/PhysRevLett.93.156801

Esposito, 2010, Angew. Chem., Int. Ed., 49, 9859, 10.1002/anie.201004718

Ma, 2007, Int. J. Hydrogen Energy, 32, 2824, 10.1016/j.ijhydene.2006.12.022

Vasić Anićijević, 2013, Int. J. Hydrogen Energy, 38, 16071, 10.1016/j.ijhydene.2013.09.079

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h

Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C

Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a

Cao, 2013, J. Am. Chem. Soc., 135, 19186, 10.1021/ja4081056

Chen, 2012, Angew. Chem., Int. Ed., 51, 6131, 10.1002/anie.201200699

Kong, 2014, J. Am. Chem. Soc., 136, 4897, 10.1021/ja501497n

Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Liu, 2014, Angew. Chem., Int. Ed., 126, 6828, 10.1002/ange.201404161

Xu, 2013, Chem. Commun., 49, 6656, 10.1039/c3cc43107j

Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Zheng, 2014, Angew. Chem., Int. Ed., 54, 52, 10.1002/anie.201407031

Benck, 2014, ACS Catal., 4, 3957, 10.1021/cs500923c

Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x

Yang, 2014, J. Mater. Chem. A, 2, 5979, 10.1039/C3TA14151A

Faber, 2014, Energy Environ. Sci., 7, 3519, 10.1039/C4EE01760A

Mao, 2014, Small, 11, 414, 10.1002/smll.201401598

Liao, 2014, Sci. Rep., 4, 6256, 10.1038/srep06256

Chen, 1996, Chem. Rev., 96, 1477, 10.1021/cr950232u

Kitchin, 2005, Catal. Today, 105, 66, 10.1016/j.cattod.2005.04.008

Cui, 2014, Chem. Commun., 50, 9340, 10.1039/C4CC02713B

Das, 2014, ACS Nano, 8, 8447, 10.1021/nn5030225

Sathe, 2014, Catal. Sci. Technol., 4, 2023, 10.1039/C4CY00075G

Zhuo, 2013, Angew. Chem., Int. Ed., 52, 10867, 10.1002/anie.201305328

Zhao, 2014, Angew. Chem., Int. Ed., 53, 13934, 10.1002/anie.201409080

Studt, 2014, Nat. Chem., 6, 320, 10.1038/nchem.1873

Peterson, 2010, Energy Environ. Sci., 3, 1311, 10.1039/c0ee00071j

Strasser, 2003, J. Phys. Chem. B, 107, 11013, 10.1021/jp030508z

Reuter, 2004, Phys. Rev. Lett., 93, 116105, 10.1103/PhysRevLett.93.116105

Liu, 2003, Electrochim. Acta, 48, 3731, 10.1016/S0013-4686(03)00538-3

Bligaard, 2004, J. Catal., 224, 206, 10.1016/j.jcat.2004.02.034

Andersson, 2006, J. Catal., 239, 501, 10.1016/j.jcat.2006.02.016

Studt, 2008, Science, 320, 1320, 10.1126/science.1156660

Honkala, 2005, Science, 307, 555, 10.1126/science.1106435

Jacobsen, 2001, J. Am. Chem. Soc., 123, 8404, 10.1021/ja010963d