The effect of sulfate half-ester groups on the mechanical performance of cellulose nanocrystal-natural rubber composites

Springer Science and Business Media LLC - Tập 30 - Trang 8929-8940 - 2023
Iikpoemugh Elo Imiete1,2, Luca Giannini3, Luciano Tadiello3, Marco Orlandi4, Luca Zoia4
1MRT Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
2Corimav Pirelli, Department of Material Science, University of Milano-Bicocca, Milan, Italy
3Pirelli Tyre S.p.A, Milan, Italy
4Department of Earth and Environmental Science, University of Milano-Bicocca, Milano, Italy

Tóm tắt

Cellulose nanocrystals (CNCs) are commercially produced via hydrolysis by sulfuric acid, resulting in the formation of sulfate half-ester groups on the surface of the nanoparticles. The sulfate half-esters promote good colloidal stability but could affect other properties of the CNCs. To study the impact of the sulfate half-ester groups on the mechanical properties of CNC-natural rubber composites, sodium hydroxide was used as a desulfation agent to partially remove this chemical functionality. Mechanical characterizations revealed that CNCs conferred outstanding mechanical properties to the composites. At the same time, differences in the amounts of sulfate half-ester groups had remarkable consequences for the tensile strength and the dynamic mechanical properties, while the vulcanization properties of the composites were less influenced.

Tài liệu tham khảo

Bai W, Li K (2009) Partial replacement of silica with microcrystalline cellulose in rubber composites. Compos Part A Appl Sci Manuf 40:1597–1605. https://doi.org/10.1016/j.compositesa.2009.07.006 Beyene D, Chae M, Dai J et al (2018) Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis. Materials 11:1272. https://doi.org/10.3390/ma11081272 Bhattacharjee S (2016) DLS and zeta potential–What they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017 Boluk Y, Danumah C (2014) Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanoparticle Res 16:2174. https://doi.org/10.1007/s11051-013-2174-4 Börjesson M, Sahlin K, Bernin D, Westman G (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135:45963. https://doi.org/10.1002/app.45963 Cao X, Xu C, Liu Y, Chen Y (2013) Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites. Carbohydr Polym 92:69–76. https://doi.org/10.1016/j.carbpol.2012.09.054 Cheng G, Varanasi P, Li C et al (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol 12:933–941. https://doi.org/10.1021/bm101240z Choi SS, Ko E (2014) Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds. Polym Test 40:170–177. https://doi.org/10.1016/j.polymertesting.2014.09.003 Chollakup R, Suethao S, Suwanruji P et al (2021) Mechanical properties and dissipation energy of carbon black/rubber composites. Compos Adv Mater. https://doi.org/10.1177/26349833211005476 Colombo L, Zoia L, Violatto MB et al (2015) Organ distribution and bone tropism of cellulose nanocrystals in living mice. Biomacromol 16:2862–2871. https://doi.org/10.1021/acs.biomac.5b00805 Danon B, Görgens J (2015) Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochim Acta 621:56–60. https://doi.org/10.1016/j.tca.2015.10.008 Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I → cellulose II. Cellulose 9:7–18. https://doi.org/10.1023/A:1015877021688 Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. https://doi.org/10.1023/A:1009260511939 Duchemin BJC (2015) Mercerisation of cellulose in aqueous NaOH at low concentrations. Green Chem 17:3941–3947. https://doi.org/10.1039/c5gc00563a Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin. https://doi.org/10.1515/9783110254600 Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8. https://doi.org/10.1016/j.cocis.2017.01.004 Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. https://doi.org/10.1039/c4nr01756k Fernandesa IJ, Santos RV, Dos Santos ECA et al (2018) Replacement of commercial silica by rice husk ash in epoxy composites: a comparative analysis. Mater Res. https://doi.org/10.1590/1980-5373-MR-2016-0562 Fukahori Y (2005) New progress in the theory and model of carbon black reinforcement of elastomers. J Appl Polym Sci 95:60–67. https://doi.org/10.1002/app.20802 Gan PG, Sam ST, Abdullah MFB, Omar MF (2020) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci. https://doi.org/10.1002/app.48544 Gong J, Li J, Xu J et al (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493. https://doi.org/10.1039/c7ra06222b Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92:1809–1816. https://doi.org/10.1016/j.carbpol.2012.10.078 Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244. https://doi.org/10.1039/b806789a Haus R, Prinz S, Priess C (2012) Assessment of high purity quartz resources. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics, 1st edn. Springer, Berlin, Heidelberg, pp 29–51 Jacobs C, Müller RH (2002) Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 19:189–194. https://doi.org/10.1023/A:1014276917363 Jordan JH, Easson MW, Condon BD (2019) Alkali hydrolysis of sulfated cellulose nanocrystals: optimization of reaction conditions and tailored surface charge. Nanomaterials 9:1232. https://doi.org/10.3390/nano9091232 Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:n/a. https://doi.org/10.1002/app.41719 Kim JH, Shim BS, Kim HS et al (2015) Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf - Green Technol 2:197–213. https://doi.org/10.1007/s40684-015-0024-9 Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemie - Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273 Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. https://doi.org/10.1039/c3nr06761k Llàcer Navarro S, Nakayama K, Idström A et al (2021) The effect of sulfate half-ester groups on cellulose nanocrystal periodate oxidation. Cellulose 28:9633–9644. https://doi.org/10.1007/s10570-021-04115-y Mansikkamäki P, Lahtinen M, Rissanen K (2007) The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: an X-ray powder diffraction study. Carbohydr Polym 68:35–43. https://doi.org/10.1016/j.carbpol.2006.07.010 Michelin M, Gomes DG, Romaní A et al (2020) Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules 25:3411. https://doi.org/10.3390/molecules25153411 Montes H, Chaussée T, Papon A et al (2010) Particles in model filled rubber: dispersion and mechanical properties. Eur Phys J E 31:263–268. https://doi.org/10.1140/epje/i2010-10570-x Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941. https://doi.org/10.1039/c0cs00108b Mostoni S, D’Arienzo M, Di Credico B et al (2021) Design of a Zn single-site curing activator for a more sustainable sulfur cross-link formation in rubber. Ind Eng Chem Res 60:10180–10192. https://doi.org/10.1021/acs.iecr.1c01580 Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. https://doi.org/10.1186/1754-6834-3-10 Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437 Rambo MKD, Ferreira MMC (2015) Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. J Braz Chem Soc 26:1491–1499. https://doi.org/10.5935/0103-5053.20150118 Rodgers B, Waddell W (2013) The science of rubber compounding. In: Mark J, Erman B, Roland M (eds) The Science and Technology of Rubber, 3rd edn. Elsevier, pp 417–471 Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. https://doi.org/10.1021/bm034519+ Rongpipi S, Ye D, Gomez ED, Gomez EW (2019) Progress and opportunities in the characterization of cellulose–An important regulator of cell wall growth and mechanics. Front. Plant Sci 9:1–28. https://doi.org/10.3389/fpls.2018.01894 Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A (2012) Progress in used tyres management in the European Union: a review. Waste Manag 32:1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010 Tang WK, Neill WK (2007) Effect of flame retardants on pyrolysis and combustion of α-cellulose. J Polym Sci Part C Polym Symp 6:65–81. https://doi.org/10.1002/polc.5070060109 Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412. https://doi.org/10.1016/j.rser.2014.08.050 Vanderfleet OM, Reid MS, Bras J et al (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528. https://doi.org/10.1007/s10570-018-2175-7 Voronova MI, Surov OV, Zakharov AG (2013) Nanocrystalline cellulose with various contents of sulfate groups. Carbohydr Polym 98:465–469. https://doi.org/10.1016/j.carbpol.2013.06.004 Yao W, Weng Y, Catchmark J (2020) Improved cellulose X-Ray diffraction analysis using fourier series modeling. Cellulose 27:5563–5579. https://doi.org/10.1007/s10570-020-03177-8 Yasir HA, Maamori MH, Al, Ali HM (2015) Effect of carbon black types on curing behavior of natural rubber. J Adv Eng Technol 2:77–80 Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296. https://doi.org/10.1016/j.carbpol.2014.09.020 Zoia L, Morelli A, Talamini L et al (2020) Cellulose nanocrystals: a multimodal tool to enhance the targeted drug delivery against bone disorders. Nanomedicine 15:2271. https://doi.org/10.2217/nnm-2020-0139 Zoppe JO, Johansson LS, Seppälä J (2015) Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. Carbohydr Polym 126:23–31. https://doi.org/10.1016/j.carbpol.2015.03.005