Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces
Tài liệu tham khảo
Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343
Coclite, 2006, On the well-posedness of the Degasperis–Procesi equation, J. Funct. Anal., 233, 60, 10.1016/j.jfa.2005.07.008
Bressan, 2007, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183, 215, 10.1007/s00205-006-0010-z
Bressan, 2007, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl., 5, 1, 10.1142/S0219530507000857
Camassa, 1993, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661, 10.1103/PhysRevLett.71.1661
Constantin, 1997, The Hamiltonian structure of the Camassa–Holm equation, Expo. Math., 15, 53
Constantin, 2001, On the scattering problem for the Camassa–Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457, 953, 10.1098/rspa.2000.0701
Constantin, 2000, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321, 10.5802/aif.1757
Constantin, 2006, The trajectories of particles in Stokes waves, Invent. Math., 166, 523, 10.1007/s00222-006-0002-5
Constantin, 1998, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26, 303
Constantin, 1998, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475, 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
Constantin, 1998, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229, 10.1007/BF02392586
Constantin, 2007, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44, 423, 10.1090/S0273-0979-07-01159-7
Constantin, 2011, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173, 559, 10.4007/annals.2011.173.1.12
Constantin, 2009, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., 192, 165, 10.1007/s00205-008-0128-2
Constantin, 2000, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, 45, 10.1007/s002200050801
Constantin, 2000, Stability of peakons, Comm. Pure Appl. Math., 53, 603, 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
Constantin, 2008, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A, 372, 7129, 10.1016/j.physleta.2008.10.050
Danchin, 2001, A few remarks on the Camassa–Holm equation, Differential Integral Equations, 14, 953, 10.57262/die/1356123175
Danchin, 2005, Fourier Analysis Methods for PDEs
Danchin, 2003, A note on well-posedness for Camassa–Holm equation, J. Differential Equations, 192, 429, 10.1016/S0022-0396(03)00096-2
Degasperis, 2002, A new integral equation with peakon solutions, Theoret. and Math. Phys., 133, 1463, 10.1023/A:1021186408422
Degasperis, 1999, Asymptotic integrability, 23
Dullin, 2004, On asymptotically equivalent shallow water wave equations, Phys. D, 190, 1, 10.1016/j.physd.2003.11.004
Escher, 2007, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. Ser. A, 19, 493, 10.3934/dcds.2007.19.493
Escher, 2006, Global weak solutions and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal., 241, 457, 10.1016/j.jfa.2006.03.022
Escher, 2007, Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation, Indiana Univ. Math. J., 56, 87, 10.1512/iumj.2007.56.3040
Fokas, 1981, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4, 47, 10.1016/0167-2789(81)90004-X
Guan, 2010, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations, 248, 2003, 10.1016/j.jde.2009.08.002
Guan, 2011, Global weak solutions for a two-component Camassa–Holm shallow water system, J. Funct. Anal., 260, 1132, 10.1016/j.jfa.2010.11.015
Guan, 2015, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal. Real World Appl., 25, 219, 10.1016/j.nonrwa.2015.04.001
Gui, 2011, On the Cauchy problem for the Degasperis–Procesi equation, Quart. Appl. Math., 69, 445, 10.1090/S0033-569X-2011-01216-5
Gui, 2010, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal., 258, 4251, 10.1016/j.jfa.2010.02.008
Gui, 2011, On the Cauchy problem for the two-component Camassa–Holm system, Math. Z., 268, 45, 10.1007/s00209-009-0660-2
Himonas, 2012, The Cauchy problem for the Novikov equation, Nonlinearity, 25, 449, 10.1088/0951-7715/25/2/449
Hone, 2008, Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41, 10.1088/1751-8113/41/37/372002
Kato, 1975, Quasi-Linear Equations of Evolution, with Applications to Partial Differential Equations, vol. 448, 25
Lenells, 2005, Traveling wave solutions of the Degasperis–Procesi equation, J. Math. Anal. Appl., 306, 72, 10.1016/j.jmaa.2004.11.038
Li, 2016, Well-posedness and global existence for a generalized Degasperis–Procesi equation, Nonlinear Anal. Real World Appl., 28, 72, 10.1016/j.nonrwa.2015.09.003
Liu, 2006, Global existence and blow-up phenomena for the Degasperis–Procesi equation, Comm. Math. Phys., 267, 801, 10.1007/s00220-006-0082-5
Liu, 2007, On the blow-up phenomena for the Degasperis–Procesi equation, Int. Math. Res. Not. IMRN, 23
Lundmark, 2007, Formation and dynamics of shock waves in the Degasperis–Procesi equation, J. Nonlinear Sci., 17, 169, 10.1007/s00332-006-0803-3
Lundmark, 2003, Multi-peakon solutions of the Degasperis–Procesi equation, Inverse Probl., 19, 1241, 10.1088/0266-5611/19/6/001
Novikov, 2009, Generalization of the Camassa–Holm equation, J. Phys. A, 42, 10.1088/1751-8113/42/34/342002
Rodríguez-Blanco, 2001, On the Cauchy problem for the Camassa–Holm equation, Nonlinear Anal., 46, 309, 10.1016/S0362-546X(01)00791-X
Toland, 1996, Stokes waves, Topol. Methods Nonlinear Anal., 7, 1, 10.12775/TMNA.1996.001
Vakhnenko, 2004, Periodic and solitary-wave solutions of the Degasperis–Procesi equation, Chaos Solitons Fractals, 20, 1059, 10.1016/j.chaos.2003.09.043
Wu, 2011, Global weak solutions for the Novikov equation, J. Phys. A, 44, 10.1088/1751-8113/44/5/055202
Wu, 2012, Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11, 707
Wu, 2013, A note on the Cauchy problem of the Novikov equation, Appl. Anal., 92, 1116, 10.1080/00036811.2011.649735
Xin, 2000, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53, 1411, 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5
Yan, 2012, The Cauchy problem for the integrable Novikov equation, J. Differential Equations, 253, 298, 10.1016/j.jde.2012.03.015
Yan, 2013, The Cauchy problem for the Novikov equation, NoDEA Nonlinear Differential Equations Appl., 20, 1157, 10.1007/s00030-012-0202-1
Yin, 2003, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47, 649, 10.1215/ijm/1258138186
Yin, 2003, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283, 129, 10.1016/S0022-247X(03)00250-6
Yin, 2004, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212, 182, 10.1016/j.jfa.2003.07.010
Yin, 2004, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53, 1189, 10.1512/iumj.2004.53.2479