Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces

Journal of Differential Equations - Tập 261 - Trang 6125-6143 - 2016
Jinlu Li1, Zhaoyang Yin1,2
1Department of Mathematics, Sun Yat-sen University, GuangZhou 510275, China
2Faculty of Information Technology, Macau University of Science and Technology, Macau, China

Tài liệu tham khảo

Bahouri, 2011, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 Coclite, 2006, On the well-posedness of the Degasperis–Procesi equation, J. Funct. Anal., 233, 60, 10.1016/j.jfa.2005.07.008 Bressan, 2007, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183, 215, 10.1007/s00205-006-0010-z Bressan, 2007, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl., 5, 1, 10.1142/S0219530507000857 Camassa, 1993, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661, 10.1103/PhysRevLett.71.1661 Constantin, 1997, The Hamiltonian structure of the Camassa–Holm equation, Expo. Math., 15, 53 Constantin, 2001, On the scattering problem for the Camassa–Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457, 953, 10.1098/rspa.2000.0701 Constantin, 2000, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321, 10.5802/aif.1757 Constantin, 2006, The trajectories of particles in Stokes waves, Invent. Math., 166, 523, 10.1007/s00222-006-0002-5 Constantin, 1998, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26, 303 Constantin, 1998, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475, 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5 Constantin, 1998, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229, 10.1007/BF02392586 Constantin, 2007, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44, 423, 10.1090/S0273-0979-07-01159-7 Constantin, 2011, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173, 559, 10.4007/annals.2011.173.1.12 Constantin, 2009, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., 192, 165, 10.1007/s00205-008-0128-2 Constantin, 2000, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, 45, 10.1007/s002200050801 Constantin, 2000, Stability of peakons, Comm. Pure Appl. Math., 53, 603, 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L Constantin, 2008, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A, 372, 7129, 10.1016/j.physleta.2008.10.050 Danchin, 2001, A few remarks on the Camassa–Holm equation, Differential Integral Equations, 14, 953, 10.57262/die/1356123175 Danchin, 2005, Fourier Analysis Methods for PDEs Danchin, 2003, A note on well-posedness for Camassa–Holm equation, J. Differential Equations, 192, 429, 10.1016/S0022-0396(03)00096-2 Degasperis, 2002, A new integral equation with peakon solutions, Theoret. and Math. Phys., 133, 1463, 10.1023/A:1021186408422 Degasperis, 1999, Asymptotic integrability, 23 Dullin, 2004, On asymptotically equivalent shallow water wave equations, Phys. D, 190, 1, 10.1016/j.physd.2003.11.004 Escher, 2007, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst. Ser. A, 19, 493, 10.3934/dcds.2007.19.493 Escher, 2006, Global weak solutions and blow-up structure for the Degasperis–Procesi equation, J. Funct. Anal., 241, 457, 10.1016/j.jfa.2006.03.022 Escher, 2007, Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation, Indiana Univ. Math. J., 56, 87, 10.1512/iumj.2007.56.3040 Fokas, 1981, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4, 47, 10.1016/0167-2789(81)90004-X Guan, 2010, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differential Equations, 248, 2003, 10.1016/j.jde.2009.08.002 Guan, 2011, Global weak solutions for a two-component Camassa–Holm shallow water system, J. Funct. Anal., 260, 1132, 10.1016/j.jfa.2010.11.015 Guan, 2015, Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system, Nonlinear Anal. Real World Appl., 25, 219, 10.1016/j.nonrwa.2015.04.001 Gui, 2011, On the Cauchy problem for the Degasperis–Procesi equation, Quart. Appl. Math., 69, 445, 10.1090/S0033-569X-2011-01216-5 Gui, 2010, On the global existence and wave-breaking criteria for the two-component Camassa–Holm system, J. Funct. Anal., 258, 4251, 10.1016/j.jfa.2010.02.008 Gui, 2011, On the Cauchy problem for the two-component Camassa–Holm system, Math. Z., 268, 45, 10.1007/s00209-009-0660-2 Himonas, 2012, The Cauchy problem for the Novikov equation, Nonlinearity, 25, 449, 10.1088/0951-7715/25/2/449 Hone, 2008, Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41, 10.1088/1751-8113/41/37/372002 Kato, 1975, Quasi-Linear Equations of Evolution, with Applications to Partial Differential Equations, vol. 448, 25 Lenells, 2005, Traveling wave solutions of the Degasperis–Procesi equation, J. Math. Anal. Appl., 306, 72, 10.1016/j.jmaa.2004.11.038 Li, 2016, Well-posedness and global existence for a generalized Degasperis–Procesi equation, Nonlinear Anal. Real World Appl., 28, 72, 10.1016/j.nonrwa.2015.09.003 Liu, 2006, Global existence and blow-up phenomena for the Degasperis–Procesi equation, Comm. Math. Phys., 267, 801, 10.1007/s00220-006-0082-5 Liu, 2007, On the blow-up phenomena for the Degasperis–Procesi equation, Int. Math. Res. Not. IMRN, 23 Lundmark, 2007, Formation and dynamics of shock waves in the Degasperis–Procesi equation, J. Nonlinear Sci., 17, 169, 10.1007/s00332-006-0803-3 Lundmark, 2003, Multi-peakon solutions of the Degasperis–Procesi equation, Inverse Probl., 19, 1241, 10.1088/0266-5611/19/6/001 Novikov, 2009, Generalization of the Camassa–Holm equation, J. Phys. A, 42, 10.1088/1751-8113/42/34/342002 Rodríguez-Blanco, 2001, On the Cauchy problem for the Camassa–Holm equation, Nonlinear Anal., 46, 309, 10.1016/S0362-546X(01)00791-X Toland, 1996, Stokes waves, Topol. Methods Nonlinear Anal., 7, 1, 10.12775/TMNA.1996.001 Vakhnenko, 2004, Periodic and solitary-wave solutions of the Degasperis–Procesi equation, Chaos Solitons Fractals, 20, 1059, 10.1016/j.chaos.2003.09.043 Wu, 2011, Global weak solutions for the Novikov equation, J. Phys. A, 44, 10.1088/1751-8113/44/5/055202 Wu, 2012, Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11, 707 Wu, 2013, A note on the Cauchy problem of the Novikov equation, Appl. Anal., 92, 1116, 10.1080/00036811.2011.649735 Xin, 2000, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53, 1411, 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5 Yan, 2012, The Cauchy problem for the integrable Novikov equation, J. Differential Equations, 253, 298, 10.1016/j.jde.2012.03.015 Yan, 2013, The Cauchy problem for the Novikov equation, NoDEA Nonlinear Differential Equations Appl., 20, 1157, 10.1007/s00030-012-0202-1 Yin, 2003, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47, 649, 10.1215/ijm/1258138186 Yin, 2003, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283, 129, 10.1016/S0022-247X(03)00250-6 Yin, 2004, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212, 182, 10.1016/j.jfa.2003.07.010 Yin, 2004, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53, 1189, 10.1512/iumj.2004.53.2479