Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs
Tóm tắt
35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed “Shock and Kill” strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by “Lock and Block” intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Tài liệu tham khảo
UNAIDS (2018) Fact sheet—latest global and regional statistics on the status of the AIDS epidemic. UNAIDS, Geneva, pp 1–6
Schwartz C, Bouchat S, Marban C et al (2017) On the way to find a cure: purging latent HIV-1 reservoirs. Biochem Pharmacol 146:10–22. https://doi.org/10.1016/j.bcp.2017.07.001
Landis RC, Abayomi EA, Bain BC et al (2018) Shifting the HIV paradigm from care to cure: proceedings from the caribbean expert summit in Barbados, August 2017. AIDS Res Hum Retrovir 34:561–569. https://doi.org/10.1089/AID.2017.0310
UNAIDS (2014) 90-90-90: An ambitious treatment target to help end the AIDS epidemic. UNAIDS, Geneva, pp 1–40
Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL (2017) Endogenous retroviruses: with Us and against Us. Front Chem 5:23. https://doi.org/10.3389/fchem.2017.00023
Arribas JR, Eron J (2013) Advances in antiretroviral therapy. Curr Opin HIV AIDS 8:341–349. https://doi.org/10.1097/COH.0b013e328361fabd
Yoshimura K (2017) Current status of HIV/AIDS in the ART era. J Infect Chemother 23:12–16. https://doi.org/10.1016/j.jiac.2016.10.002
Duncan KC, Reading C, Borwein AM et al (2010) HIV incidence and prevalence among aboriginal peoples in Canada. AIDS Behav 15:214–227. https://doi.org/10.1007/s10461-010-9792-y
UNAIDS (2013) UNAIDS report on the global AIDS epidemic 2013. UNAIDS, Geneva, pp 1–198
Van Epps P, Kalayjian RC (2017) Human immunodeficiency virus and aging in the era of effective antiretroviral therapy. Infect Dis Clin N Am 31:791–810. https://doi.org/10.1016/j.idc.2017.07.007
Cillo AR, Mellors JW (2016) Which therapeutic strategy will achieve a cure for HIV-1? Curr Opin Virol 18:14–19. https://doi.org/10.1016/j.coviro.2016.02.001
Macallan DC, Borghans JAM, Asquith B (2017) Human T cell memory: a dynamic view. Vaccines (Basel). https://doi.org/10.3390/vaccines5010005
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R (2018) Barriers for HIV cure: the latent reservoir. AIDS Res Hum Retrovir 34:739–759. https://doi.org/10.1089/AID.2018.0118
Kandathil AJ, Sugawara S, Balagopal A (2016) Are T cells the only HIV-1 reservoir? Retrovirology 13:86. https://doi.org/10.1186/s12977-016-0323-4
Sacha JB, Ndhlovu LC (2016) Strategies to target non-T-cell HIV reservoirs. Curr Opin HIV AIDS 11:376–382. https://doi.org/10.1097/COH.0000000000000283
Darcis G, Van Driessche B, Bouchat S et al (2018) Molecular control of HIV and SIV latency. Curr Top Microbiol Immunol 417:1–22. https://doi.org/10.1007/82_2017_74
Sadowski I, Mitchell DA (2005) TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. Eur J Cancer 41:2528–2536. https://doi.org/10.1016/j.ejca.2005.08.011
Sadowski I, Lourenco P, Malcolm T (2008) Factors controlling chromatin organization and nucleosome positioning for establishment and maintenance of HIV latency. Curr HIV Res 6:286–295
Mbonye U, Karn J (2017) The molecular basis for human immunodeficiency virus latency. Annu Rev Virol 4:261–285. https://doi.org/10.1146/annurev-virology-101416-041646
Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple histone lysine methyltransferases are required for the establishment and maintenance of HIV-1 latency. mBio. https://doi.org/10.1128/mbio.00133-17
Hashemi FB, Barreto K, Bernhard W et al (2016) HIV provirus stably reproduces parental latent and induced transcription phenotypes regardless of the chromosomal integration site. J Virol 90:5302–5314. https://doi.org/10.1128/JVI.02842-15
Turner A-MW, Margolis DM (2017) Chromatin regulation and the histone code in HIV latency. Yale J Biol Med 90:229–243
Khan S, Iqbal M, Tariq M et al (2018) Epigenetic regulation of HIV-1 latency: focus on polycomb group (PcG) proteins. Clin Epigenet 10:14. https://doi.org/10.1186/s13148-018-0441-z
Mousseau G, Valente ST (2017) Role of host factors on the regulation of tat-mediated HIV-1 transcription. Curr Pharm Des 23:4079–4090. https://doi.org/10.2174/1381612823666170622104355
Wang P, Qu X, Zhou X et al (2015) Two cellular microRNAs, miR-196b and miR-1290, contribute to HIV-1 latency. Virology 486:228–238. https://doi.org/10.1016/j.virol.2015.09.016
Zapata JC, Campilongo F, Barclay RA et al (2017) The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the polycomb repressor complex 2 and promoting nucleosome assembly. Virology 506:34–44. https://doi.org/10.1016/j.virol.2017.03.002
Singh PK, Plumb MR, Ferris AL et al (2015) LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev 29:2287–2297. https://doi.org/10.1101/gad.267609.115
Desimmie BA, Weydert C, Schrijvers R et al (2015) HIV-1 IN/Pol recruits LEDGF/p75 into viral particles. Retrovirology 12:16. https://doi.org/10.1186/s12977-014-0134-4
Lenasi T, Contreras X, Peterlin BM (2008) Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4:123–133. https://doi.org/10.1016/j.chom.2008.05.016
Dahabieh MS, Ooms M, Simon V, Sadowski I (2013) A doubly fluorescent HIV-1 reporter shows that the majority of integrated HIV-1 Is latent shortly after infection. J Virol 87:4716–4727. https://doi.org/10.1128/JVI.03478-12
Dahabieh MS, Ooms M, Brumme C et al (2014) Direct non-productive HIV-1 infection in a T-cell line is driven by cellular activation state and NFkappaB. Retrovirology 11:17. https://doi.org/10.1186/1742-4690-11-17
Calvanese V, Chavez L, Laurent T et al (2013) Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology 446:283–292. https://doi.org/10.1016/j.virol.2013.07.037
Duverger A, Jones J, May J et al (2009) Determinants of the establishment of human immunodeficiency virus type 1 latency. J Virol 83:3078–3093. https://doi.org/10.1128/JVI.02058-08
Bernhard W, Barreto K, Raithatha S, Sadowski I (2013) An Upstream YY1 binding site on the HIV-1 LTR contributes to latent infection. PLoS One 8:e77052. https://doi.org/10.1371/journal.pone.0077052.s001
Rezaei SD, Lu HK, Chang JJ et al (2018) The pathway to establishing HIV latency is critical to how latency is maintained and reversed. J Virol. https://doi.org/10.1128/jvi.02225-17
Kulpa DA, Chomont N (2015) HIV persistence in the setting of antiretroviral therapy: when, where and how does HIV hide? J Virus Erad 1:59–66
Westera L, Drylewicz J, den Braber I et al (2013) Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood 122:2205–2212. https://doi.org/10.1182/blood-2013-03-488411
Yang LP, Riley JL, Carroll RG et al (1998) Productive infection of neonatal CD8+ T lymphocytes by HIV-1. J Exp Med 187:1139–1144
Wong JK, Yukl SA (2016) Tissue reservoirs of HIV. Curr Opin HIV AIDS 11:362–370. https://doi.org/10.1097/COH.0000000000000293
Collin M, McGovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30. https://doi.org/10.1111/imm.12117
Llewellyn GN, Alvarez-Carbonell D, Chateau M et al (2018) HIV-1 infection of microglial cells in a reconstituted humanized mouse model and identification of compounds that selectively reverse HIV latency. J Neurovirol 24:192–203. https://doi.org/10.1007/s13365-017-0604-2
Marban C, Forouzanfar F, Ait-Ammar A et al (2016) Targeting the brain reservoirs: toward an HIV cure. Front Immunol 7:397. https://doi.org/10.3389/fimmu.2016.00397
Painter MM, Zaikos TD, Collins KL (2017) Quiescence promotes latent HIV infection and resistance to reactivation from latency with histone deacetylase inhibitors. J Virol 11:78. https://doi.org/10.1128/jvi.01080-17
Myszka DG, Sweet RW, Hensley P et al (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97:9026–9031
Zaikos TD, Collins KL (2014) Long-lived reservoirs of HIV-1. Trends Microbiol. https://doi.org/10.1016/j.tim.2014.02.015
Zaikos TD, Terry VH, Sebastian Kettinger NT et al (2018) Hematopoietic stem and progenitor cells are a distinct HIV reservoir that contributes to persistent viremia in suppressed patients. Cell Rep 25:3759–3773. https://doi.org/10.1016/j.celrep.2018.11.104
Barat C, Proust A, Deshiere A et al (2018) Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 66:1363–1381. https://doi.org/10.1002/glia.23310
Melkova Z, Shankaran P, Madlenakova M, Bodor J (2017) Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 62:73–87. https://doi.org/10.1007/s12223-016-0474-7
Shan L, Siliciano RF (2013) From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. Bioessays 35:544–552. https://doi.org/10.1002/bies.201200170
Reeves DB, Duke ER, Wagner TA et al (2018) A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun 9:4811. https://doi.org/10.1038/s41467-018-06843-5
Hill AL (2018) Mathematical models of HIV latency. Curr Top Microbiol Immunol 417:131–156. https://doi.org/10.1007/82_2017_77
Araínga M, Edagwa B, Mosley RL et al (2017) A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology 14:17. https://doi.org/10.1186/s12977-017-0344-7
Dahl V, Josefsson L, Palmer S (2010) HIV reservoirs, latency, and reactivation: prospects for eradication. Antivir Res 85:286–294. https://doi.org/10.1016/j.antiviral.2009.09.016
Ruelas DS, Greene WC (2013) An integrated overview of HIV-1 latency. Cell 155:519–529. https://doi.org/10.1016/j.cell.2013.09.044
Boritz EA, Douek DC (2017) Perspectives on human immunodeficiency virus (HIV) cure: HIV persistence in tissue. J Infect Dis 215:S128–S133. https://doi.org/10.1093/infdis/jix005
Veenhuis RT, Clements JE, Gama L (2019) HIV eradication strategies: implications for the central nervous system. Curr HIV/AIDS Rep 214:231–239. https://doi.org/10.1007/s11904-019-00428-7
Hütter G (2016) Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Res Ther. https://doi.org/10.1186/s12981-016-0114-y
Gupta RK, Abdul-jawad S, McCoy LE et al (2019) HIV-1 remission following CCR1Δ32/Δ32 haematopoietic stem-cell transplantation. Nature. https://doi.org/10.1038/s41586-019-1027-4
Passaes CP, Sáez-Cirión A (2014) HIV cure research: advances and prospects. Virology. https://doi.org/10.1016/j.virol.2014.02.021
Lusic M, Giacca M (2015) Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J Mol Biol 427:688–694. https://doi.org/10.1016/j.jmb.2014.07.022
Symons J, Chopra A, Malantinkova E et al (2017) HIV integration sites in latently infected cell lines: evidence of ongoing replication. Retrovirology 14:2. https://doi.org/10.1186/s12977-016-0325-2
Greenwood EJ, Matheson NJ, Wals K et al (2016) Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants. eLife 5:12112. https://doi.org/10.7554/elife.18296
Iglesias-Ussel M, Vandergeeten C, Marchionni L et al (2013) High levels of CD2 expression identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed subjects. J Virol 87:9148–9158. https://doi.org/10.1128/JVI.01297-13
Descours B, Petitjean G, López-Zaragoza J-L et al (2017) CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replication-competent proviruses. Nature 543:564–567. https://doi.org/10.1038/nature21710
García M, Navarrete-Muñoz MA, Ligos JM et al (2018) CD32 expression is not associated to HIV-DNA content in CD4 cell subsets of individuals with different levels of HIV control. Sci Rep 8:15541. https://doi.org/10.1038/s41598-018-33749-5
Lucic B, Lusic M (2016) Connecting HIV-1 integration and transcription: a step toward new treatments. FEBS Lett 590:1927–1939. https://doi.org/10.1002/1873-3468.12226
Sgarbanti M, Battistini A (2013) Therapeutics for HIV-1 reactivation from latency. Curr Opin Virol 3:394–401. https://doi.org/10.1016/j.coviro.2013.06.001
Thorlund K, Horwitz MS, Fife BT et al (2017) Landscape review of current HIV “kick and kill” cure research—some kicking, not enough killing. BMC Infect Dis 17:595. https://doi.org/10.1186/s12879-017-2683-3
Margolis DM, Archin NM (2017) Proviral latency, persistent human immunodeficiency virus infection, and the development of latency reversing agents. J Infect Dis 215:S111–S118. https://doi.org/10.1093/infdis/jiw618
Kim Y, Anderson JL, Lewin SR (2018) Getting the “Kill” into “Shock and Kill”: strategies to eliminate latent HIV. Cell Host Microbe 23:14–26. https://doi.org/10.1016/j.chom.2017.12.004
Shimabukuro-Vornhagen A, Gödel P, Subklewe M et al (2018) Cytokine release syndrome. J Immunother Cancer 6:56. https://doi.org/10.1186/s40425-018-0343-9
Petravic J, Rasmussen TA, Lewin SR et al (2017) Relationship between measures of HIV reactivation and decline of the latent reservoir under latency-reversing agents. J Virol. https://doi.org/10.1128/jvi.02092-16
Chun T-W, Moir S, Fauci AS (2015) HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol 16:584–589. https://doi.org/10.1038/ni.3152
Perreau M, Banga R, Pantaleo G (2017) Targeted immune interventions for an HIV-1 cure. Trends Mol Med 23:945–961. https://doi.org/10.1016/j.molmed.2017.08.006
Huang S-H, Ren Y, Thomas AS et al (2018) Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells. J Clin Investig 128:876–889. https://doi.org/10.1172/JCI97555
Schröder ARW, Shinn P, Chen H et al (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529
Malcolm T, Chen J, Chang C, Sadowski I (2007) Induction of chromosomally integrated HIV-1 LTR requires RBF-2 (USF/TFII-I) and RAS/MAPK signaling. Virus Genes 35:215–223. https://doi.org/10.1007/s11262-007-0109-9
Jones RB, Mueller S, O’Connor R et al (2016) A subset of latency-reversing agents expose HIV-infected resting CD4+ T-cells to recognition by cytotoxic T-lymphocytes. PLoS Pathog 12:e1005545. https://doi.org/10.1371/journal.ppat.1005545
Hashemi P, Barreto K, Bernhard W et al (2018) Compounds producing an effective combinatorial regimen for disruption of HIV-1 latency. EMBO Mol Med 10:160–174. https://doi.org/10.15252/emmm.201708193
Bashiri K, Rezaei N, Nasi M, Cossarizza A (2018) The role of latency reversal agents in the cure of HIV: a review of current data. Immunol Lett 196:135–139. https://doi.org/10.1016/j.imlet.2018.02.004
Spina CA, Anderson J, Archin NM et al (2013) An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 9:e1003834. https://doi.org/10.1371/journal.ppat.1003834
Karn J (2000) Tat, a novel regulator of HIV transcription and latency. In: Kuiken C, McCutchan F, Mellors JW et al (eds) Theoretical biology. Biophysics Group, London, pp 2–18
Rasmussen TA, Tolstrup M, Søgaard OS (2016) Reversal of latency as part of a cure for HIV-1. Trends Microbiol 24:90–97. https://doi.org/10.1016/j.tim.2015.11.003
Madrid-Elena N, García-Bermejo ML, Serrano-Villar S et al (2018) Maraviroc is associated with latent HIV-1 reactivation through NF-κB activation in resting CD4+ T cells from HIV-infected individuals on suppressive antiretroviral therapy. J Virol. https://doi.org/10.1128/jvi.01931-17
Rochat MA, Schlaepfer E, Speck RF (2017) Promising role of toll-like receptor 8 agonist in concert with prostratin for activation of silent HIV. J Virol. https://doi.org/10.1128/jvi.02084-16
Archin NM, Kirchherr JL, Sung JA et al (2017) Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Investig 127:3126–3135. https://doi.org/10.1172/JCI92684
Bernhard W, Barreto K, Saunders A et al (2011) The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Lett 585:3549–3554. https://doi.org/10.1016/j.febslet.2011.10.018
Wang P, Lu P, Qu X et al (2017) Reactivation of HIV-1 from latency by an ingenol derivative from Euphorbia kansui. Sci Rep 7:9451. https://doi.org/10.1038/s41598-017-07157-0
Lim H, Kim K-C, Son J et al (2017) Synergistic reactivation of latent HIV-1 provirus by PKA activator dibutyryl-cAMP in combination with an HDAC inhibitor. Virus Res 227:1–5. https://doi.org/10.1016/j.virusres.2016.09.015
Finley J (2017) Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1. Med Hypotheses 104:133–146. https://doi.org/10.1016/j.mehy.2017.05.032
Spivak AM, Planelles V (2018) Novel latency reversal agents for HIV-1 cure. Annu Rev Med 69:421–436. https://doi.org/10.1146/annurev-med-052716-031710
Bobardt M, Kuo J, Chatterji U et al (2019) The inhibitor apoptosis protein antagonist Debio 1143 Is an attractive HIV-1 latency reversal candidate. PLoS One 14:e0211746. https://doi.org/10.1371/journal.pone.0211746
Abner E, Stoszko M, Zeng L et al (2018) A new quinoline BRD4 inhibitor targets a distinct latent HIV-1 reservoir for reactivation from other “Shock” drugs. J Virol 92:e02056-17. https://doi.org/10.1128/JVI.02056-17
Wu J, Ao M-T, Shao R et al (2017) A chalcone derivative reactivates latent HIV-1 transcription through activating P-TEFb and promoting Tat-SEC interaction on viral promoter. Sci Rep 7:10657. https://doi.org/10.1038/s41598-017-10728-w
Chirullo B, Sgarbanti R, Limongi D et al (2013) A candidate anti-HIV reservoir compound, auranofin, exerts a selective “anti-memory” effect by exploiting the baseline oxidative status of lymphocytes. Cell Death Dis 4:e944. https://doi.org/10.1038/cddis.2013.473
Doyon G, Sobolewski MD, Huber K et al (2014) Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1. PLoS One 9:e84964. https://doi.org/10.1371/journal.pone.0084964.t003
Duquenne C, Gimenez S, Guigues A et al (2017) Reversing HIV latency via sphingosine-1-phosphate receptor 1 signaling. AIDS 31:2443–2454. https://doi.org/10.1097/QAD.0000000000001649
Smith KA, Lin X, Bolshakov O et al (2015) Activation of HIV-1 with nanoparticle-packaged small-molecule protein phosphatase-1-targeting compound. Sci Pharm 83:535–548. https://doi.org/10.3797/scipharm.1502-01
Tyagi M, Iordanskiy S, Ammosova T et al (2015) Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1. Retrovirology 12:63. https://doi.org/10.1186/s12977-015-0190-4
Pache L, Dutra MS, Spivak AM et al (2015) BIRC2/cIAP1 is a negative regulator of HIV-1 transcription and can be targeted by smac mimetics to promote reversal of viral latency. Cell Host Microbe 18:345–353. https://doi.org/10.1016/j.chom.2015.08.009
Chun TW, Engel D, Mizell SB et al (1999) Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5:651–655. https://doi.org/10.1038/9498
Macedo AB, Novis CL, De Assis CM et al (2018) Dual TLR2 and TLR7 agonists as HIV latency-reversing agents. JCI Insight 3:20. https://doi.org/10.1172/jci.insight.122673
Tsai A, Irrinki A, Kaur J et al (2017) Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy. J Virol. https://doi.org/10.1128/jvi.02166-16
Rasmussen TA, Lewin SR (2016) Shocking HIV out of hiding: where are we with clinical trials of latency reversing agents? Curr Opin HIV AIDS 11:394–401. https://doi.org/10.1097/COH.0000000000000279
Jones RB, Walker BD (2016) HIV-specific CD8+ T cells and HIV eradication. J Clin Investig 126:455–463. https://doi.org/10.1172/JCI80566
Marsden MD, Loy BA, Wu X et al (2017) In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication. PLoS Pathog 13:e1006575. https://doi.org/10.1371/journal.ppat.1006575
Chen FX, Smith ER, Shilatifard A (2018) Born to run: control of transcription elongation by RNA polymerase II. Nat Publ Gr 19:464–478. https://doi.org/10.1038/s41580-018-0010-5
He N, Zhou Q (2011) New insights into the control of HIV-1 transcription: when tat meets the 7SK snRNP and super elongation complex (SEC). J Neuroimmune Pharmacol 6:260–268. https://doi.org/10.1007/s11481-011-9267-6
Mbonye UR, Gokulrangan G, Datt M et al (2013) Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4 + T lymphocytes. PLoS Pathog 9:e1003338. https://doi.org/10.1371/journal.ppat.1003338.s011
Li Z, Lu H, Zhou Q (2016) A minor subset of super elongation complexes plays a predominant role in reversing HIV-1 latency. Mol Cell Biol. https://doi.org/10.1128/mcb.00994-15
Li Z, Guo J, Wu Y, Zhou Q (2013) The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation. Nucleic Acids Res 41:277–287. https://doi.org/10.1093/nar/gks976
Huang H, Liu S, Jean M et al (2017) A novel bromodomain inhibitor reverses HIV-1 latency through specific binding with BRD4 to promote tat and P-TEFb association. Front Microbiol 8:1035. https://doi.org/10.3389/fmicb.2017.01035
Lu P, Shen Y, Yang H et al (2017) BET inhibitors RVX-208 and PFI-1 reactivate HIV-1 from latency. Sci Rep 7:16646. https://doi.org/10.1038/s41598-017-16816-1
Rahnamoun H, Lee J, Sun Z et al (2018) RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat Struct Mol Biol 25:687–697. https://doi.org/10.1038/s41594-018-0102-0
Xing S, Bullen CK, Shroff NS et al (2011) Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol 85:6060–6064. https://doi.org/10.1128/JVI.02033-10
Fulda S (2017) Smac mimetics to therapeutically target IAP proteins in cancer. Int Rev Cell Mol Biol 330:157–169. https://doi.org/10.1016/bs.ircmb.2016.09.004
Chen H-C, Martinez JP, Zorita E et al (2017) Position effects influence HIV latency reversal. Nat Struct Mol Biol 24:47–54. https://doi.org/10.1038/nsmb.3328
Laird GM, Bullen CK, Rosenbloom DIS et al (2015) Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Investig 125:1901–1912. https://doi.org/10.1172/JCI80142
Tang X, Lu H, Dooner M et al (2018) Exosomal Tat protein activates latent HIV-1 in primary, resting CD4+ T lymphocytes. JCI Insight 3:318. https://doi.org/10.1172/jci.insight.95676
Geng G, Liu B, Chen C et al (2016) Development of an attenuated tat protein as a highly-effective agent to specifically activate HIV-1 latency. Mol Ther 24:1528–1537. https://doi.org/10.1038/mt.2016.117
Bialek JK, Dunay GA, Voges M et al (2016) Targeted HIV-1 latency reversal using CRISPR/Cas9-derived transcriptional activator systems. PLoS One 11:e0158294. https://doi.org/10.1371/journal.pone.0158294
Perdigão P, Gaj T, Santa-Marta M et al (2016) Reactivation of latent HIV-1 expression by engineered TALE transcription factors. PLoS One 11:e0150037. https://doi.org/10.1371/journal.pone.0150037
Sadowski I, Ma J, Triezenberg S, Ptashne M (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564. https://doi.org/10.1038/335563a0
Stafford GA, Morse RH (2001) GCN5 dependence of chromatin remodeling and transcriptional activation by the GAL4 and VP16 activation domains in budding yeast. Mol Cell Biol 21:4568–4578. https://doi.org/10.1128/MCB.21.14.4568-4578.2001
Zhang H (2009) Reversal of HIV-1 latency with anti-microRNA inhibitors. Int J Biochem Cell Biol 41:451–454. https://doi.org/10.1016/j.biocel.2008.07.016
Timilsina U, Gaur R (2016) Modulation of apoptosis and viral latency—an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 97:813–824. https://doi.org/10.1099/jgv.0.000402
Tateishi H, Monde K, Anraku K et al (2017) A clue to unprecedented strategy to HIV eradication: “Lock-in and apoptosis”. Sci Rep 7:8957. https://doi.org/10.1038/s41598-017-09129-w
Cummins NW, Sainski-Nguyen AM, Natesampillai S et al (2017) Maintenance of the HIV reservoir is antagonized by selective BCL2 inhibition. J Virol. https://doi.org/10.1128/jvi.00012-17
Fong LE, Sulistijo ES, Miller-Jensen K (2017) Systems analysis of latent HIV reversal reveals altered stress kinase signaling and increased cell death in infected T cells. Sci Rep 7:16179. https://doi.org/10.1038/s41598-017-15532-0
Matsuda K, Kobayakawa T, Tsuchiya K et al (2019) Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C-induced HIV latency reversal. J Biol Chem 294:116–129. https://doi.org/10.1074/jbc.RA118.005798
Wen J, Yan M, Liu Y et al (2016) Specific elimination of latently HIV-1 infected cells using HIV-1 protease-sensitive toxin nanocapsules. PLoS One 11:e0151572. https://doi.org/10.1371/journal.pone.0151572
Darcis G, Van Driessche B, van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol. https://doi.org/10.1016/j.it.2016.12.003
Kwarteng A, Ahuno ST, Kwakye-Nuako G (2017) The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 14:32. https://doi.org/10.1186/s12981-017-0157-8
Wang CR, Zhou R, Ng TB et al (2014) First report on isolation of methyl gallate with antioxidant, anti-HIV-1 and HIV-1 enzyme inhibitory activities from a mushroom (Pholiota adiposa). Environ Toxicol Pharmacol 37:626–637. https://doi.org/10.1016/j.etap.2014.01.023
Pengue G, Caputo A, Rossi C et al (1995) Transcriptional silencing of human immunodeficiency virus type 1 long terminal repeat-driven gene expression by the Krüppel-associated box repressor domain targeted to the transactivating response element. J Virol 69:6577–6580
Wang G, Zhao N, Berkhout B, Das AT (2018) CRISPR-Cas based antiviral strategies against HIV-1. Virus Res 244:321–332. https://doi.org/10.1016/j.virusres.2017.07.020
Jin H, Li D, Sivakumaran H et al (2016) Shutdown of HIV-1 transcription in T cells by nullbasic, a mutant tat protein. mBio 7:67. https://doi.org/10.1128/mbio.00518-16
Murchie AIH, Davis B, Isel C et al (2004) Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J Mol Biol 336:625–638. https://doi.org/10.1016/j.jmb.2003.12.028
Li M-J, Kim J, Li S et al (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR140 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 12:900–909. https://doi.org/10.1016/j.ymthe.2005.07.524
Ahlenstiel C, Mendez C, Lim STH et al (2015) Novel RNA duplex locks HIV-1 in a latent state via chromatin-mediated transcriptional silencing. Mol Ther Nucleic Acids 4:e261. https://doi.org/10.1038/mtna.2015.31
Margolis DM (2011) Eradication therapies for HIV infection: time to begin again. AIDS Res Hum Retrovir 27:347–353. https://doi.org/10.1089/AID.2011.0017
Qu X, Wang P, Ding D et al (2013) Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 41:7771–7782. https://doi.org/10.1093/nar/gkt571
Wang Q, Liu S, Liu Z et al (2018) Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res 250:21–30. https://doi.org/10.1016/j.virusres.2018.04.002
Yin C, Zhang T, Qu X et al (2017) In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 25:1168–1186. https://doi.org/10.1016/j.ymthe.2017.03.012
Allen AG, Chung C-H, Atkins A et al (2018) Gene editing of HIV-1 Co-receptors to prevent and/or cure virus infection. Front Microbiol 9:2940. https://doi.org/10.3389/fmicb.2018.02940
Spragg C, De Silva Feelixge H, Jerome KR (2016) Cell and gene therapy strategies to eradicate HIV reservoirs. Curr Opin HIV AIDS 11:442–449. https://doi.org/10.1097/COH.0000000000000284
Ferrari G, Pollara J, Tomaras GD, Haynes BF (2017) Humoral and innate antiviral immunity as tools to clear persistent HIV infection. J Infect Dis 215:S152–S159. https://doi.org/10.1093/infdis/jiw555
Pankrac J, Klein K, Mann JFS (2017) Eradication of HIV-1 latent reservoirs through therapeutic vaccination. AIDS Res Ther 14:45. https://doi.org/10.1186/s12981-017-0177-4
Garrido C, Abad-Fernandez M, Tuyishime M et al (2018) Interleukin-15-stimulated natural killer cells clear HIV-1-infected cells following latency reversal ex vivo. J Virol. https://doi.org/10.1128/jvi.00235-18
Gringhuis SI, Hertoghs N, Kaptein TM et al (2017) HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat Immunol 18:225–235. https://doi.org/10.1038/ni.3647
Tapia G, Højen JF, Ökvist M et al (2017) Sequential Vacc-4x and romidepsin during combination antiretroviral therapy (cART): immune responses to Vacc-4x regions on p24 and changes in HIV reservoirs. J Infect 75:555–571. https://doi.org/10.1016/j.jinf.2017.09.004
Lee WS, Richard J, Lichtfuss M et al (2016) Antibody-dependent cellular cytotoxicity against reactivated HIV-1-infected cells. J Virol 90:2021–2030. https://doi.org/10.1128/JVI.02717-15
Parsons MS, Cromer D, Davenport MP, Kent SJ (2018) HIV reactivation after partial protection by neutralizing antibodies. Trends Immunol 39:359–366. https://doi.org/10.1016/j.it.2017.12.006
Martinez-Navio JM, Fuchs SP, Pantry SN et al (2019) Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. IMMUNI 50:567–575. https://doi.org/10.1016/j.immuni.2019.02.005
Zhang H, Curreli F, Waheed AA et al (2013) Dual-acting stapled peptides target both HIV-1 entry and assembly. Retrovirology 10:136. https://doi.org/10.1186/1742-4690-10-136
Bowers NL, Helton ES, Huijbregts RPH et al (2014) Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog 10:e1003993. https://doi.org/10.1371/journal.ppat.1003993
Porichis F, Kaufmann DE (2012) Role of PD-1 in HIV pathogenesis and as target for therapy. Curr HIV AIDS Rep 9:81–90. https://doi.org/10.1007/s11904-011-0106-4
Miranda LR, Schaefer BC, Kupfer A et al (2002) Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules. Proc Natl Acad Sci 99:8031–8036. https://doi.org/10.1073/pnas.122696599
Yang H, Wallace Z, Dorrell L (2018) Therapeutic targeting of HIV reservoirs: how to give T cells a new direction. Front Immunol 9:2861. https://doi.org/10.3389/fimmu.2018.02861
Dan N, Setua S, Kashyap VK et al (2018) Antibody-drug conjugates for cancer therapy: chemistry to clinical implications. Pharmaceuticals (Basel). https://doi.org/10.3390/ph11020032
Mulford DA, Scheinberg DA, Jurcic JG (2005) The promise of targeted {alpha}-particle therapy. J Nucl Med 46(Suppl 1):199S–204S
Watanabe K, Kuramitsu S, Posey AD, June CH (2018) Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front Immunol 9:2486. https://doi.org/10.3389/fimmu.2018.02486
Yang H, Buisson S, Bossi G et al (2016) Elimination of latently HIV-infected cells from antiretroviral therapy-suppressed subjects by engineered immune-mobilizing T-cell receptors. Mol Ther 24:1913–1925. https://doi.org/10.1038/mt.2016.114
van Montfort T, Speijer D, Berkhout B (2017) Dendritic cells as natural latency reversing agent: a wake-up call for HIV-1. Virulence 8:1494–1497. https://doi.org/10.1080/21505594.2017.1371898
Maldini CR, Ellis GI, Riley JL (2018) CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol 18:605–616. https://doi.org/10.1038/s41577-018-0042-2
Pinzone MR, O’Doherty U (2018) Measuring integrated HIV DNA ex vivo and in vitro provides insights about how reservoirs are formed and maintained. Retrovirology 15:22. https://doi.org/10.1186/s12977-018-0396-3