Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development
Tài liệu tham khảo
Antolini, 2011, Palladium-based electrodes: a way to reduce platinum content in polymer electrolyte membrane fuel cells, Electrochim. Acta, 56, 2299, 10.1016/j.electacta.2010.11.101
Arvidsson, 2017, Carbon nanomaterials as potential substitutes for scarce metals, J. Clean. Prod., 156, 253, 10.1016/j.jclepro.2017.04.048
Ayat, S., Wrobel, R., Baker, J., Drury, D., 2017. A comparative study between aluminium and copper windings for a modular-wound IPM electric machine, in: Procedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1–8. 〈http://dx.doi.org/10.1109/iemdc.2017.8002010〉.
Battelle, 2013
Braga, 2017, Alternative strategy for a safe rechargeable battery, Energy Environ. Sci., 10, 331, 10.1039/C6EE02888H
Burress, 2011
Candelise, 2011, Materials availability for thin film (TF) PV technologies development: a real concern?, Renew. Sustain. Energy Rev., 15, 4972, 10.1016/j.rser.2011.06.012
Chung, J., Lee, J., 2017. Asian battery makers eye nickel top-up as cobalt price bites. Reuters, 〈https://www.reuters.com/article/us-southkorea-battery-cobalt/asian-battery-makers-eye-nickel-top-up-as-cobalt-price-bites-idUSKBN1AJ0S8〉.
Dai, 2015, Metal-free catalysts for oxygen reduction reaction, Chem. Rev., 115, 4823, 10.1021/cr5003563
Davidsson, 2017, Material requirements and availability for multi-terawatt deployment of photovoltaics, Energy Policy, 108, 574, 10.1016/j.enpol.2017.06.028
Deetman, 2018, Scenarios for Demand Growth of Metals in Electricity Generation Technologies, Cars, and Electronic Appliances, Environ. Sci. Technol., 10.1021/acs.est.7b05549
DoE, 2011
DoE, 2012
Dorrell, 2010
Elshkaki, 2013, Dynamic analysis of the global metals flows and stocks in electricity generation technologies, J. Clean. Prod., 59, 260, 10.1016/j.jclepro.2013.07.003
Elshkaki, 2015, Solar cell metals and their hosts: a tale of oversupply and undersupply, Appl. Energy, 158, 167, 10.1016/j.apenergy.2015.08.066
Erdmann, 2011, Criticality of non-fuel minerals: a review of major approaches and analyses, Environ. Sci. Technol., 45, 7620, 10.1021/es200563g
Espinosa, 2015, Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective, Sol. Energy Mater. Sol. Cells, 137, 303, 10.1016/j.solmat.2015.02.013
Finley, 2001, Selection of copper versus aluminum rotors for induction motors, IEEE Trans. Ind. Appl., 37, 1563, 10.1109/28.968162
Fizaine, 2015, Renewable electricity producing technologies and metal depletion: a sensitivity analysis using the EROI, Ecol. Econ., 110, 106, 10.1016/j.ecolecon.2014.12.001
García-Olivares, 2015, Substituting silver in solar photovoltaics is feasible and allows for decentralization in smart regional grids, Environ. Innov. Soc. Transit., 17, 15, 10.1016/j.eist.2015.05.004
Goodrich, 2013, A wafer-based monocrystalline silicon photovoltaics road map: utilizing known technology improvement opportunities for further reductions in manufacturing costs, Sol. Energy Mater. Sol. Cells, 114, 110, 10.1016/j.solmat.2013.01.030
Graedel, 2016, Six Years of Criticality Assessments: what Have We Learned So Far?, J. Ind. Ecol., 20, 692, 10.1111/jiec.12305
Grandell, 2014, Silver supply risk analysis for the solar sector, Renew. Energy, 69, 157, 10.1016/j.renene.2014.03.032
Grandell, 2016, Role of critical metals in the future markets of clean energy technologies, Renew. Energy, 95, 53, 10.1016/j.renene.2016.03.102
Green, 2014, The emergence of perovskite solar cells, Nat. Photon, 8, 506, 10.1038/nphoton.2014.134
Grubler, 2016, Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions, Energy Res. Social. Sci., 22, 18, 10.1016/j.erss.2016.08.015
Habib, 2014, Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling, J. Clean. Prod., 84, 348, 10.1016/j.jclepro.2014.04.035
Habib, 2016, Reviewing resource criticality assessment from a dynamic and technology specific perspective – using the case of direct-drive wind turbines, J. Clean. Prod., 112, 3852, 10.1016/j.jclepro.2015.07.064
Handley, 2002, Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells, J. Power Sources, 106, 344, 10.1016/S0378-7753(01)01019-9
Hawkins, 2013, Corrigendum to: comparative environmental life cycle assessment of conventional and electric vehicles, J. Ind. Ecol., 17, 158, 10.1111/j.1530-9290.2012.00532.x
Henckens, 2016, Mineral resources: geological scarcity, market price trends, and future generations, Resour. Policy, 49, 102, 10.1016/j.resourpol.2016.04.012
Hoenderdaal, 2013, Can a dysprosium shortage threaten green energy technologies?, Energy, 49, 344, 10.1016/j.energy.2012.10.043
IEA, 2017
IEA, 2017
Jin, 2016, Review of critical material studies, Resour. Conserv. Recycl., 113, 77, 10.1016/j.resconrec.2016.06.003
Kavlak, 2015, Metal production requirements for rapid photovoltaics deployment, Energy Environ. Sci., 8, 1651, 10.1039/C5EE00585J
Kim, 2013, Investigation on plated Ni/Cu contact for mono-crystalline silicon solar cells, Electron. Mater. Lett., 9, 677, 10.1007/s13391-013-2169-4
Kimiabeigi, M., Widmer, J.D., Sheridan, R.S., Walton, A., Harris, R., 2016. Design of high performance traction motors using cheaper grade of materials, In: Proceedings of the 8th IET International Conference on Power Electronics, Machines and Drives (PEMD2016), pp. 1–7. 〈http://dx.doi.org/10.1049/cp.2016.0287〉.
Lacal-Arántegui, 2015, Materials use in electricity generators in wind turbines – state-of-the-art and future specifications, J. Clean. Prod., 87, 275, 10.1016/j.jclepro.2014.09.047
Liu, 2014, A dopant-free hole-transporting material for efficient and stable perovskite solar cells, Energy Environ. Sci., 7, 2963, 10.1039/C4EE01589D
Moss, 2013, The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies, Energy Policy, 55, 556, 10.1016/j.enpol.2012.12.053
NMAB, 1972
Oman, H., Simpson-Clar, R., 1996. Permanent magnets for vehicle-propulsion motors: cost/availability, In: Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. IEEE, Washington DC. 〈http://dx.doi.org/10.1109/IECEC.1996.552851〉.
Onstad, 2016
Pavel, 2016, Critical raw materials in lighting applications: substitution opportunities and implication on their demand, Phys. Status Solidi (A), 213, 2937, 10.1002/pssa.201600594
Pavel, 2017, Substitution strategies for reducing the use of rare earths in wind turbines, Resour. Policy, 52, 349, 10.1016/j.resourpol.2017.04.010
Pavel, 2017, Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications, Sustain. Mater. Technol., 12, 62
Pihl, 2012, Material constraints for concentrating solar thermal power, Energy, 44, 944, 10.1016/j.energy.2012.04.057
Rahman, 2004, Evaluating radial, axial and transverse flux topologies for ‘In-wheel’ motors, Power Electron. Transp., 75, 10.1109/PET.2004.1393803
Rehman, 2014, Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells, Materials, 7, 1318, 10.3390/ma7021318
Riba, 2016, Rare-earth-free propulsion motors for electric vehicles: a technology review, Renew. Sustain. Energy Rev., 57, 367, 10.1016/j.rser.2015.12.121
Richa, 2014, A future perspective on lithium-ion battery waste flows from electric vehicles, Resour., Conserv. Recycl., 83, 63, 10.1016/j.resconrec.2013.11.008
Saga, 2010, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater., 2, 96, 10.1038/asiamat.2010.82
Simons, 2015, A life-cycle perspective on automotive fuel cells, Appl. Energy, 157, 884, 10.1016/j.apenergy.2015.02.049
Song, 2016, Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications, J. Photonics Energy, 6, 022001, 10.1117/1.JPE.6.022001
Speirs, J., Houari, Y., Contestabile, M., Gross, R., Gross, B., 2013. Materials availability: Potential constraints to the future low-carbon economy, Working Paper II: Batteries, Magnets and Materials. UKERC, London.
Srinivasan, V., 2008. Batteries for Vehicular Applications, AIP Conference Proceedings, pp. 283–296. 〈http://doi.org/10.1063/1.2993726〉.
Sullivan, 2008, Aluminum windings and other strategies for high-frequency magnetics design in an era of high copper and energy costs, IEEE Trans. Power Electron., 23, 2044, 10.1109/TPEL.2008.925434
Sun, 2011, The impact of widespread deployment of fuel cell vehicles on platinum demand and price, Int. J. Hydrog. Energy, 36, 11116, 10.1016/j.ijhydene.2011.05.157
Sverdrup, 2017, An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity, J. Clean. Prod., 140, 359, 10.1016/j.jclepro.2015.06.085
Tokimatsu, 2017, Energy modeling approach to the global energy-mineral nexus: a first look at metal requirements and the 2 degreeC target, Appl. Energy, 207, 494, 10.1016/j.apenergy.2017.05.151
UNEP, 2011
USGS, 1980
USGS, 2018
VDMA, 2017
Viebahn, 2015, Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables, Renew. Sustain. Energy Rev., 49, 655, 10.1016/j.rser.2015.04.070
Vikström, 2016, A scarce resource? The debate on metals in Sweden 1870–1918, Extr. Ind. Soc., 3, 772
Wadia, 2009, Materials availability expands the opportunity for large-scale photovoltaics deployment, Environ. Sci. Technol., 43, 2072, 10.1021/es8019534
Wadia, 2011, Resource constraints on the battery energy storage potential for grid and transportation applications, J. Power Sources, 196, 1593, 10.1016/j.jpowsour.2010.08.056
Wang, 2009, CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells, J. Am. Chem. Soc., 131, 15976, 10.1021/ja905970y
Widmer, 2015, Electric vehicle traction motors without rare earth magnets, Sustain. Mater. Technol., 3, 7
Xiong, 2017, Measuring Oxygen Release from Delithiated LiNixMnyCo1-x-yO2 and Its Effects on the Performance of High Voltage Li-Ion Cells, J. Electrochem. Soc., 164, A3025, 10.1149/2.0291713jes
Yabiku, R., Fialho, R., Teran, L., Santos, A., Rangel, E., Dutra, D., 2010. A comparative study between copper and aluminum induction squirrel cage constructions, Petroleum and Chemical Industry Conference (PCIC), San Antonio, pp. 1–9. 〈http://doi.org/10.1109/pcic.2010.5666832〉.
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f