Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

Nature Materials - Tập 9 Số 6 - Trang 511-517 - 2010
Dae‐Hyeong Kim1, Jonathan Viventi2, Jason J. Amsden3, Jianliang Xiao4, Leif Vigeland5, Yun‐Soung Kim1, Justin A. Blanco2, Bruce Panilaitis3, Éric Fréchette6, Diego Contreras5, David L. Kaplan3, Fiorenzo G. Omenetto3, Yonggang Huang4, Ao Wang7, M. R. Zakin8, Brian Litt6, John A. Rogers1
1Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
2Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA
3Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA
4Department of Mechanical Engineering and Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
5Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, Philadelphia, Pennsylvania 19104, USA
6Department of Neurology, Hospital of the University of Pennsylvania, 3 West Gates, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
7Department of Engineering Mechanics, AML, Tsinghua University, Beijing 100084, China
8Defense Advanced Research Projects Agency, Arlington, Virginia 22203, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kim, S. et al. Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 11, 453–466 (2009).

Ryu, S. I. & Shenoy, K. V. Human cortical prostheses: Lost in translation? Neurosurg. Focus 27, E5 (2009).

Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).

Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 6, 1253–1254 (2003).

Ball, T. et al. Towards an implantable brain–machine interface based on epicortical field potentials. Biomed. Tech. 49, 756–759 (2004).

Wilson, J. A., Felton, E. A., Garell, P. C., Schalk, G. & Williams, J. C. ECoG factors underlying multimodal control of a brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 246–250 (2006).

Freeman, W. J., Rogers, L. J., Holmes, M. D. & Silbergeld, D. L. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95, 111–121 (2000).

Kellis, S. S., House, P. A., Thomson, K. E., Brown, R. & Greger, B. Human neocortical electrical activity recorded on nonpenetrating microwire arrays: Applicability for neuroprostheses. Neurosurg. Focus 27, E9 (2009).

Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

Hollenberg, B. A., Richards, C. D., Richards, R., Bahr, D. F. & Rector, D. M. A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Methods 153, 147–153 (2006).

Yu, Z. et al. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26, 1135–1145 (2009).

Meacham, K. W., Giuly, R. J., Guo, L., Hochman, S. & DeWeerth, S. P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdev. 10, 259–269 (2008).

Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D. L. & Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008).

Omenetto, F. G. & Kaplan, D. L. A new route for silk. Nature Photon. 2, 641–643 (2008).

Jin, H-J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).

Lu, Q. et al. Water-insoluble silk films with silk I structure. Acta Biomater. 6, 1380–1387 (2009).

Jiang, C. et al. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17, 2229–2237 (2007).

Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139–148 (2001).

Perry, H., Gopinath, A., Kaplan, D. L., Negro, L. D. & Omenetto, F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008).

Murphy, A. R., John, P. S. & Kaplan, D. L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29, 2829–2838 (2008).

Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003).

Santin, M., Motta, A., Freddi, G. & Cannas, M. In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999).

Kim, D-H. et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95, 133701–133703 (2009).

Amsden, J. J. et al. Spectral analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009).

Parker, S. T. et al. Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009).

Soong, H. K. & Kenyon, K. R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91, 479–483 (1984).

Chaudhury, M. K. & Whitesides, G. M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991).

Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

Padnick, L. B. & Linsenmeier, R. A. Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vision Res. 39, 2833–2840 (1999).

Cardin, J. A., Palmer, L. A. & Contreras, D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27, 10333–10344 (2007).

Cardin, J. A., Palmer, L. A. & Contreras, D. Cellular mechanisms underlying stimulus-dependent gain modulation in primary visual cortex neurons in vivo. Neuron 59, 150–160 (2008).