Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kim, S. et al. Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdevices 11, 453–466 (2009).
Ryu, S. I. & Shenoy, K. V. Human cortical prostheses: Lost in translation? Neurosurg. Focus 27, E5 (2009).
Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).
Mehring, C. et al. Inference of hand movements from local field potentials in monkey motor cortex. Nature Neurosci. 6, 1253–1254 (2003).
Ball, T. et al. Towards an implantable brain–machine interface based on epicortical field potentials. Biomed. Tech. 49, 756–759 (2004).
Wilson, J. A., Felton, E. A., Garell, P. C., Schalk, G. & Williams, J. C. ECoG factors underlying multimodal control of a brain–computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 246–250 (2006).
Freeman, W. J., Rogers, L. J., Holmes, M. D. & Silbergeld, D. L. Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands. J. Neurosci. Methods 95, 111–121 (2000).
Kellis, S. S., House, P. A., Thomson, K. E., Brown, R. & Greger, B. Human neocortical electrical activity recorded on nonpenetrating microwire arrays: Applicability for neuroprostheses. Neurosurg. Focus 27, E9 (2009).
Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).
Hollenberg, B. A., Richards, C. D., Richards, R., Bahr, D. F. & Rector, D. M. A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Methods 153, 147–153 (2006).
Yu, Z. et al. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array. J. Neurotrauma 26, 1135–1145 (2009).
Meacham, K. W., Giuly, R. J., Guo, L., Hochman, S. & DeWeerth, S. P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed. Microdev. 10, 259–269 (2008).
Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D. L. & Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008).
Jin, H-J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).
Jiang, C. et al. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17, 2229–2237 (2007).
Sofia, S., McCarthy, M. B., Gronowicz, G. & Kaplan, D. L. Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54, 139–148 (2001).
Perry, H., Gopinath, A., Kaplan, D. L., Negro, L. D. & Omenetto, F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008).
Murphy, A. R., John, P. S. & Kaplan, D. L. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29, 2829–2838 (2008).
Santin, M., Motta, A., Freddi, G. & Cannas, M. In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999).
Kim, D-H. et al. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95, 133701–133703 (2009).
Amsden, J. J. et al. Spectral analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009).
Parker, S. T. et al. Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009).
Soong, H. K. & Kenyon, K. R. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91, 479–483 (1984).
Chaudhury, M. K. & Whitesides, G. M. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7, 1013–1025 (1991).
Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).
Padnick, L. B. & Linsenmeier, R. A. Properties of the flash visual evoked potential recorded in the cat primary visual cortex. Vision Res. 39, 2833–2840 (1999).
Cardin, J. A., Palmer, L. A. & Contreras, D. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27, 10333–10344 (2007).