Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro - Brazil
Tóm tắt
Từ khóa
Tài liệu tham khảo
Almeida, 2016, Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973-2013, Int. J. Climatol., 37, 2013, 10.1002/joc.4831
Amirataee, 2017, The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran, Nat. Hazards, 86, 2437, 10.1007/s11069-016-2675-4
André, 2008, Identificação de regiões pluviometricamente homogêneas no Estado do Rio de Janeiro, utilizando-se valores mensais, Rev. Bras. Meteorol., 23, 501, 10.1590/S0102-77862008000400009
Blain, 2011, 118 anos de dados mensais do Índice Padronizado de Precipitação: série meteorológica de Campinas, Estado de São Paulo, Rev. Bras. Meteorol., 26, 137, 10.1590/S0102-77862011000100012
Blain, 2010, Índice de precipitação aplicado às condições de seca no estado do Espírito Santo, Rev. Bras. Eng. Agríc. Ambient., 14, 1067, 10.1590/S1415-43662010001000007
Brito, 2016, Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorol. Atmos. Phys., 129, 469, 10.1007/s00703-016-0481-x
Caloeiro, 2017, Drought analysis in New Zealand using the standardized precipitation index, Environ. Earth Sci., 76, 1
Chang, 2017, The impact of global unknown teleconnection patterns on terrestrial precipitation across North and Central America, Atmos. Res., 193, 107, 10.1016/j.atmosres.2017.04.018
Dabanli, 2017, Long-term spatio-temporal drought variability in Turkey, J. Hidrol., 552, 779, 10.1016/j.jhydrol.2017.07.038
dos Santos, 2017, Droughts in the Amazon: identification, characterization and dynamical mechanisms associated, Am. J. Clim. Chang., 6, 425, 10.4236/ajcc.2017.62022
Everitt, 1991, 400
FAO
Fu, 2017, Spatial patterns of ENSO's interannual influences on lilacs vary with time and periodicity, Atmos. Res., 186, 95, 10.1016/j.atmosres.2016.11.013
Gibbs, 1967, Rainfall deciles as drought indicators
Guedes, 2012, Análise espacial de eventos de secas com base no índice padronizado de precipitação e análise de agrupamento, Rev. Bra. Ciênc. Amb., 23, 55
Hao, 2014, Global integrated drought monitoring and prediction system, Scit. Dat., 1, 1
IBGE
Karavitis, 2011, Application of the Standardized Precipitation Index (SPI) in Greece, Water, 3, 787, 10.3390/w3030787
Łabędzki, 2007, Estimation of local drought frequency in central Poland using the standardized precipitation index SPI, Irrig. and Drain., 56, 67, 10.1002/ird.285
Livada, 2007, Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI), Theor. Appl. Climatol., 89, 143, 10.1007/s00704-005-0227-z
Lyra, 2017, Rainfall variability over Alagoas under the influences of SST anomalies, Meteorog. Atmos. Phys., 129, 157, 10.1007/s00703-016-0461-1
Mantua, 1997, A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 1069, 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
Marengo, 2017, Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region, An. Acad. Bras. Ciênc., 3, 1
McKee, 1993, The relationship of drought frequency and duration to time scales, 179
Montebeller, 2007, Variabilidade espacial do potencial erosivo das chuvas no Estado do Rio de Janeiro, Eng. Agr., 27, 426, 10.1590/S0100-69162007000300011
Nandintsetseg, 2013, Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongólia, Nat. Hazards, 66, 995, 10.1007/s11069-012-0527-4
NOAA/CPC
Oliveira Júnior, 2014, Análise da precipitação e sua relação com sistemas meteorológicos em seropédica, Rio de Janeiro. Flor. e Amb., 21, 140
Palmer, 1965
Parry, 2016, A systematic assessment of drought termination in the United Kingdom, Hydrol. Earth Syst. Sci., 20, 4265, 10.5194/hess-20-4265-2016
Penalba, 2016, Resposta à precipitação dos eventos El Niño / La Niña no sul da América do Sul - ênfase em ocorrências regionais de seca, Avanços em Geociências, 42, 1
Rivera, 2014, Trends and spatial patterns of drought affected area in Southern South America, Climate, 2, 264, 10.3390/cli2040264
R Core Team, 2017
Silva, 2014, Caracterização climatológicas e tendências observadas em extremos climáticos no estado do rio de janeiro, An. Inst. de Geo. UFRJ, 37, 123, 10.11137/2014_2_123_138
Sobral, 2018, Variabilidade espaço-temporal e interanual da chuva no estado do rio de janeiro, Rev. Bras. Clim., 22, 281
Sobral, 2018, Spatial variability of SPI and RDIst drought indices applied to intense episodes of drought occurred in Rio de Janeiro state, Brazil. Int. J. Climatol., 1-21
Solh, 2014, Drought preparedness and drought mitigation in the developing world's drylands, Weat Clim. Ext., 3, 62, 10.1016/j.wace.2014.03.003
Stagge, 2015, Candidate distributions for climatological drought indices (SPI and SPEI), Int. J. Climatol., 35, 4027, 10.1002/joc.4267
Tedeschi, 2015, Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer, Int. J. Climatol., 35, 2045, 10.1002/joc.4106
Teodoro, 2015, Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso do Sul state, Brazil. J. Agr., 14, 80
Terassi, 2018, Variabilidade do índice de precipitação padronizada na região norte do estado do paraná associada aos eventos de el niño-oscilação sul, Rev. Bras. Meteorol., 33, 11, 10.1590/0102-7786331002
Thomas, 2016, Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in Central India, Nat. Hazards, 81, 1627, 10.1007/s11069-016-2149-8
Vicente-Serrano, 2017, The complex influence of ENSO on droughts in Ecuador, Clim. Dyn., 48, 405, 10.1007/s00382-016-3082-y
Wang, 2015, Drought severity change in China during 1961–2012 indicated by SPI and SPEI, Nat. Hazards, 75, 2437, 10.1007/s11069-014-1436-5