Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro - Brazil

Atmospheric Research - Tập 212 - Trang 91-105 - 2018
José Francisco de Oliveira‐Júnior1,2, Givanildo de Góis3, Paulo Miguel de Bodas Terassi4, Carlos Antônio da Silva5, Cláudio José Cavalcante Blanco6, Bruno Serafini Sobral7,2, Kaio Allan Cruz Gasparini8
1Institute of Atmospheric Sciences (ICAT), Federal University of Alagoas (UFAL), 57072-260, Maceió, Alagoas, Brazil
2Postgraduate Program in Biosystems Engineering (PGEB), Federal University of Fluminense (UFF), Niterói, Rio de Janeiro 24220-900, Brazil
3School of Industrial Metallurgical Engineering of Volta Redonda, Technological Center, Federal University of Fluminense (UFF), 27255-250 Volta Redonda, Rio de Janeiro, Brazil
4Postgraduate Program in Physical Geography, University of São Paulo (USP), 05508-000 São Paulo, Brazil
5State University of Mato Grosso (UNEMAT), 78580-000 Alta Floresta, MT, Brazil
6Postgraduate Program in Civil Engineering - PPGEC/ITEC/UFPA, Faculdade de Engenharia Sanitária e Ambiental - FAESA/ITEC/UFPA, 66075-110 Belém, Brazil
7Land and Cartography Institute of Rio de Janeiro (ITERJ), State Secretary of the Environment (SEA-RJ), Rua Regente Feijó, 7, Centro, Rio de Janeiro 20060-060, Brazil
8National Institute for Space Research (INPE), 29550000 São José dos Campos, SP, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almeida, 2016, Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973-2013, Int. J. Climatol., 37, 2013, 10.1002/joc.4831

Amirataee, 2017, The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran, Nat. Hazards, 86, 2437, 10.1007/s11069-016-2675-4

André, 2008, Identificação de regiões pluviometricamente homogêneas no Estado do Rio de Janeiro, utilizando-se valores mensais, Rev. Bras. Meteorol., 23, 501, 10.1590/S0102-77862008000400009

Blain, 2011, 118 anos de dados mensais do Índice Padronizado de Precipitação: série meteorológica de Campinas, Estado de São Paulo, Rev. Bras. Meteorol., 26, 137, 10.1590/S0102-77862011000100012

Blain, 2010, Índice de precipitação aplicado às condições de seca no estado do Espírito Santo, Rev. Bras. Eng. Agríc. Ambient., 14, 1067, 10.1590/S1415-43662010001000007

Brito, 2016, Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorol. Atmos. Phys., 129, 469, 10.1007/s00703-016-0481-x

Caloeiro, 2017, Drought analysis in New Zealand using the standardized precipitation index, Environ. Earth Sci., 76, 1

Chang, 2017, The impact of global unknown teleconnection patterns on terrestrial precipitation across North and Central America, Atmos. Res., 193, 107, 10.1016/j.atmosres.2017.04.018

Dabanli, 2017, Long-term spatio-temporal drought variability in Turkey, J. Hidrol., 552, 779, 10.1016/j.jhydrol.2017.07.038

dos Santos, 2017, Droughts in the Amazon: identification, characterization and dynamical mechanisms associated, Am. J. Clim. Chang., 6, 425, 10.4236/ajcc.2017.62022

Everitt, 1991, 400

FAO

Fu, 2017, Spatial patterns of ENSO's interannual influences on lilacs vary with time and periodicity, Atmos. Res., 186, 95, 10.1016/j.atmosres.2016.11.013

Gibbs, 1967, Rainfall deciles as drought indicators

Guedes, 2012, Análise espacial de eventos de secas com base no índice padronizado de precipitação e análise de agrupamento, Rev. Bra. Ciênc. Amb., 23, 55

Hao, 2014, Global integrated drought monitoring and prediction system, Scit. Dat., 1, 1

IBGE

Karavitis, 2011, Application of the Standardized Precipitation Index (SPI) in Greece, Water, 3, 787, 10.3390/w3030787

Łabędzki, 2007, Estimation of local drought frequency in central Poland using the standardized precipitation index SPI, Irrig. and Drain., 56, 67, 10.1002/ird.285

Livada, 2007, Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI), Theor. Appl. Climatol., 89, 143, 10.1007/s00704-005-0227-z

Lloyd-Hughes, 2002, A drought climatology for Europe, Int. J. Climatol., 22, 1571, 10.1002/joc.846

Lyra, 2017, Rainfall variability over Alagoas under the influences of SST anomalies, Meteorog. Atmos. Phys., 129, 157, 10.1007/s00703-016-0461-1

Mantua, 1997, A Pacific interdecadal climate oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78, 1069, 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

Marengo, 2017, Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region, An. Acad. Bras. Ciênc., 3, 1

McKee, 1993, The relationship of drought frequency and duration to time scales, 179

Montebeller, 2007, Variabilidade espacial do potencial erosivo das chuvas no Estado do Rio de Janeiro, Eng. Agr., 27, 426, 10.1590/S0100-69162007000300011

Nandintsetseg, 2013, Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongólia, Nat. Hazards, 66, 995, 10.1007/s11069-012-0527-4

NOAA/CPC

Oliveira Júnior, 2014, Análise da precipitação e sua relação com sistemas meteorológicos em seropédica, Rio de Janeiro. Flor. e Amb., 21, 140

Palmer, 1965

Parry, 2016, A systematic assessment of drought termination in the United Kingdom, Hydrol. Earth Syst. Sci., 20, 4265, 10.5194/hess-20-4265-2016

Penalba, 2016, Resposta à precipitação dos eventos El Niño / La Niña no sul da América do Sul - ênfase em ocorrências regionais de seca, Avanços em Geociências, 42, 1

Rivera, 2014, Trends and spatial patterns of drought affected area in Southern South America, Climate, 2, 264, 10.3390/cli2040264

R Core Team, 2017

Silva, 2014, Caracterização climatológicas e tendências observadas em extremos climáticos no estado do rio de janeiro, An. Inst. de Geo. UFRJ, 37, 123, 10.11137/2014_2_123_138

Sobral, 2018, Variabilidade espaço-temporal e interanual da chuva no estado do rio de janeiro, Rev. Bras. Clim., 22, 281

Sobral, 2018, Spatial variability of SPI and RDIst drought indices applied to intense episodes of drought occurred in Rio de Janeiro state, Brazil. Int. J. Climatol., 1-21

Solh, 2014, Drought preparedness and drought mitigation in the developing world's drylands, Weat Clim. Ext., 3, 62, 10.1016/j.wace.2014.03.003

Stagge, 2015, Candidate distributions for climatological drought indices (SPI and SPEI), Int. J. Climatol., 35, 4027, 10.1002/joc.4267

Tedeschi, 2015, Influence of Central and East ENSO on extreme events of precipitation in South America during austral spring and summer, Int. J. Climatol., 35, 2045, 10.1002/joc.4106

Teodoro, 2015, Analysis of the occurrence of wet and drought periods using standardized precipitation index in Mato Grosso do Sul state, Brazil. J. Agr., 14, 80

Terassi, 2018, Variabilidade do índice de precipitação padronizada na região norte do estado do paraná associada aos eventos de el niño-oscilação sul, Rev. Bras. Meteorol., 33, 11, 10.1590/0102-7786331002

Thomas, 2016, Drought indicators-based integrated assessment of drought vulnerability: a case study of Bundelkhand droughts in Central India, Nat. Hazards, 81, 1627, 10.1007/s11069-016-2149-8

Vicente-Serrano, 2017, The complex influence of ENSO on droughts in Ecuador, Clim. Dyn., 48, 405, 10.1007/s00382-016-3082-y

Wang, 2015, Drought severity change in China during 1961–2012 indicated by SPI and SPEI, Nat. Hazards, 75, 2437, 10.1007/s11069-014-1436-5

Willmott, 1981, On the validation of models, Phys. Geogr., 2, 184, 10.1080/02723646.1981.10642213

Zhang, 1997, ENSO-like interdecadal variability: 1900–93, J. Clim., 10, 1004, 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2