The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite

Carbon - Tập 52 - Trang 541-549 - 2013
Kyung Tae Kim1, Si Young Choi1, Eun Hye Shin1, Kyong Seok Moon2, Hye Young Koo1, Gil-Geun Lee3, Gook Hyun Ha1
1Powder Technology Department, Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831, Republic of Korea
2Materials Research Center, Samsung Advanced Institute of Technology, San 24, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
3Division of Advanced Materials Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea

Tài liệu tham khảo

Disalro, 1999, Thermoelectric cooling and power generation, Science, 285, 703, 10.1126/science.285.5428.703 Chung, 2000, CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, 287, 1024, 10.1126/science.287.5455.1024 Zhao, 2005, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, Appl Phys Lett, 86, 062111, 10.1063/1.1863440 Takashiri, 2007, Thermoelectric properties of n-type nanocrystalline bismuth–telluride-based thin films deposited by flash evaporation, J Appl Phys, 101, 074301, 10.1063/1.2717867 Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv Mater, 19, 1043, 10.1002/adma.200600527 Scheele, 2009, Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles, Adv Funct Mater, 19, 3476, 10.1002/adfm.200901261 Tang, 2007, Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, Appl Phys Lett, 90, 012102, 10.1063/1.2425007 Poudel, 2008, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634, 10.1126/science.1156446 Xie, 2009, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl Phys Lett, 94, 102111, 10.1063/1.3097026 Kim, 2006, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors, Phys Rev Lett, 96, 045901, 10.1103/PhysRevLett.96.045901 Faleev, 2008, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Phys Rev B, 77, 214304, 10.1103/PhysRevB.77.214304 Baughman, 2002, Carbon nanotubes—the route toward applications, Science, 297, 787, 10.1126/science.1060928 Yu, 2008, Thermoelectric behavior of segregated-network polymer nanocomposites, Nano Lett, 8, 4428, 10.1021/nl802345s Yao, 2010, Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites, ACS Nano, 4, 2445, 10.1021/nn1002562 Kim, 2010, Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate), ACS Nano, 4, 513, 10.1021/nn9013577 Mishra, 2009, Thermomechanical and thermal contact characteristics of bismuth telluride films electrodeposited on carbon nanotube arrays, Adv Mater, 21, 4280, 10.1002/adma.200803705 Zhan, 2006, Thermoelectric properties of carbon nanotube/ceramic nanocomposites, Scipta Mater, 54, 77, 10.1016/j.scriptamat.2005.09.003 Cha, 2005, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv Mater, 17, 1377, 10.1002/adma.200401933 Kim, 2008, The role of interfacial oxygen atoms on the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites, Small, 4, 1936, 10.1002/smll.200701223 Zhao, 2009, Chemical synthesis of Bi0.5Sb1.5Te3 nanocrystals and their surface oxidation properties, ACS Appl Mater Inter, 1, 1259, 10.1021/am900148d Okpalugo, 2005, High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs, Carbon, 43, 153, 10.1016/j.carbon.2004.08.033 Zhao, 2012, Surface functionalization of vertically-aligned carbon nanotube forests by radio-frequency Ar/O2 plasma, Carbon, 50, 2710, 10.1016/j.carbon.2012.02.029 Cho, 2010, Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Mater, 63, 375, 10.1016/j.scriptamat.2010.04.024 Cho, 2012, On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube–copper matrix composite, Acta Mater, 60, 726, 10.1016/j.actamat.2011.09.056 Kang, 2011, Reduction of lattice thermal conductivity in single Bi–Te core/shell nanowires with rough interface, Adv Mater, 23, 3414, 10.1002/adma.201101460 Heremans, 2008, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554, 10.1126/science.1159725 Mahan, 1996, The best thermoelectric, Proc Natl Acad Sci USA, 93, 7436, 10.1073/pnas.93.15.7436 Venkatasubramanian, 2001, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413, 597, 10.1038/35098012 Dirmyer, 2009, Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles, Small, 5, 933, 10.1002/smll.200801206