Generalized stochastic flows and applications to incompressible viscous fluids

Bulletin des Sciences Mathématiques - Tập 138 - Trang 565-584 - 2014
Alexandra Antoniouk1, Marc Arnaudon2, Ana Bela Cruzeiro3
1Dep. Nonlinear Analysis, Institute of Mathematics NAS Ukraine, Tereschchenkivska str., 3, Kyiv, 01 601, Ukraine
2Institut de Mathématiques de Bordeaux, CNRS: UMR 5251, Université Bordeaux 1, F33405 Talence Cedex, France
3GFMUL and Dep. de Matemática IST (TUL), Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Tài liệu tham khảo

A. Antoniouk, M. Arnaudon, Variational principle for weighted porous media equation, preprint. Arnaudon, 2012, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., 136, 857, 10.1016/j.bulsci.2012.06.007 Arnaudon Arnold, 1966, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 316, 10.5802/aif.233 Arnold, 1998, Topological Methods in Hydrodynamics, vol. 125 Brenier, 1989, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Am. Math. Soc., 2, 225, 10.1090/S0894-0347-1989-0969419-8 Cipriano, 2007, Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., 275, 255, 10.1007/s00220-007-0306-3 Constantin, 2008, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., 61, 330, 10.1002/cpa.20192 DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835 Dolbeault, 2008, On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6, 477, 10.4310/CMS.2008.v6.n2.a10 Dolbeault, 2008, Lq-Functional inequalities and weighted porous media equations, Potential Anal., 28, 35, 10.1007/s11118-007-9066-0 Ebin, 1970, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of. Math. (2), 92, 102, 10.2307/1970699 Eyink, 2010, Stochastic least action principle for the incompressible Navier–Stokes equations, Phys. D, 239, 1236, 10.1016/j.physd.2008.11.011 Figalli, 2008, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., 254, 109, 10.1016/j.jfa.2007.09.020 Flandoli, 2010, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1, 10.1007/s00222-009-0224-4 Gliklich, 1997 Lee, 2011 Meyer, 1984, Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincaré, B, 20, 353 Nakagomi, 1981, Stochastic variational derivations of the Navier–Stokes equation, Lett. Math. Phys., 160, 337 Ocone, 1989, A generalized Itô Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25, 39 Shnirelman, 1985, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb., 128(170), 82 Watanabe, 2007, Differential geometry on diffeomorphism groups and Lagrangian stability, Phys. D, 225, 197, 10.1016/j.physd.2006.10.011 Yasue, 1983, A variational principle for the Navier–Stokes equation, J. Funct. Anal., 51, 133, 10.1016/0022-1236(83)90021-6 Zheng, 1985, Tightness results for laws of diffusion processes, Ann. Inst. Henri Poincaré B, 21, 103