Generalized stochastic flows and applications to incompressible viscous fluids
Tài liệu tham khảo
A. Antoniouk, M. Arnaudon, Variational principle for weighted porous media equation, preprint.
Arnaudon, 2012, Lagrangian Navier–Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math., 136, 857, 10.1016/j.bulsci.2012.06.007
Arnaudon
Arnold, 1966, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16, 316, 10.5802/aif.233
Arnold, 1998, Topological Methods in Hydrodynamics, vol. 125
Brenier, 1989, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Am. Math. Soc., 2, 225, 10.1090/S0894-0347-1989-0969419-8
Cipriano, 2007, Navier–Stokes equation and diffusions on the group of homeomorphisms of the torus, Commun. Math. Phys., 275, 255, 10.1007/s00220-007-0306-3
Constantin, 2008, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Commun. Pure Appl. Math., 61, 330, 10.1002/cpa.20192
DiPerna, 1989, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 511, 10.1007/BF01393835
Dolbeault, 2008, On the Bakry–Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci., 6, 477, 10.4310/CMS.2008.v6.n2.a10
Dolbeault, 2008, Lq-Functional inequalities and weighted porous media equations, Potential Anal., 28, 35, 10.1007/s11118-007-9066-0
Ebin, 1970, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of. Math. (2), 92, 102, 10.2307/1970699
Eyink, 2010, Stochastic least action principle for the incompressible Navier–Stokes equations, Phys. D, 239, 1236, 10.1016/j.physd.2008.11.011
Figalli, 2008, Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, J. Funct. Anal., 254, 109, 10.1016/j.jfa.2007.09.020
Flandoli, 2010, Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1, 10.1007/s00222-009-0224-4
Gliklich, 1997
Lee, 2011
Meyer, 1984, Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincaré, B, 20, 353
Nakagomi, 1981, Stochastic variational derivations of the Navier–Stokes equation, Lett. Math. Phys., 160, 337
Ocone, 1989, A generalized Itô Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25, 39
Shnirelman, 1985, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb., 128(170), 82
Watanabe, 2007, Differential geometry on diffeomorphism groups and Lagrangian stability, Phys. D, 225, 197, 10.1016/j.physd.2006.10.011
Yasue, 1983, A variational principle for the Navier–Stokes equation, J. Funct. Anal., 51, 133, 10.1016/0022-1236(83)90021-6
Zheng, 1985, Tightness results for laws of diffusion processes, Ann. Inst. Henri Poincaré B, 21, 103