Ice‐volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar

American Geophysical Union (AGU) - Tập 117 Số B7 - 2012
Eyjólfur Magnússon1, M. T. Guðmundsson1, Matthew J. Roberts2, Guðjón Már Sigurðsson2, F. Höskuldsson3, Björn Oddsson1
1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland
2Icelandic Meteorological Office, Reykjavík, Iceland
3Icelandic Coast Guard, Reykjavík, Iceland

Tóm tắt

During the eruption of the ice‐covered Eyjafjallajökull volcano, a series of images from an airborne Synthetic Aperture Radar (SAR) were obtained by the Icelandic Coast Guard. Cloud obscured the summit from view during the first three days of the eruption, making the weather‐independent SAR a valuable monitoring resource. Radar images revealed the development of ice cauldrons in a 200 m thick ice cover within the summit caldera, as well as the formation of cauldrons to the immediate south of the caldera. Additionally, radar images were used to document the subglacial and supraglacial passage of floodwater to the north and south of the eruption site. The eruption breached the ice surface about four hours after its onset at about 01:30 UTC on 14 April 2010. The first SAR images, obtained between 08:55 and 10:42 UTC, show signs of limited supraglacial drainage from the eruption site. Floodwater began to drain from the ice cap almost 5.5 h after the beginning of the eruption, implying storage of meltwater at the eruption site due to initially constricted subglacial drainage from the caldera. Heat transfer rates from magma to ice during early stages of cauldron formation were about 1 MW m−2 in the radial direction and about 4 MW m−2 vertically. Meltwater release was characterized by accumulation and drainage with most of the volcanic material in the ice cauldrons being drained in hyperconcentrated floods. After the third day of the eruption, meltwater generation at the eruption site diminished due to an insulating lag of tephra.

Từ khóa


Tài liệu tham khảo

10.5194/essd‐3‐9‐2011

Björnsson H., 2002, Subglacial lakes and jökulhlaups in Iceland, Global Planet. Change, 35, 255

Björnsson H., 2000, Surface and bedrock topography of the Mýrdalsjökull ice cap, Iceland: The Katla caldera, eruption sites and routes of jökulhlaups, Jökull, 49, 29, 10.33799/jokull2000.49.029

10.3189/172756501781832520

10.1029/2011JB008462

10.1029/2011JB008726

Elachi C., 1987, Introduction to Physics and Techniques of Remote Sensing

Gröndal G. O., 2005, Hættumat vegna eldgosa og hlaupa frá vestanverðum Mýrdalsjökli og Eyjafjallajökli [Risk Assessments on Eruptions and Jökulhlaups From the Western Part of Mýrdalsjökull and Eyjafjallajökull], 105

10.1029/140GM04

10.1016/S1571-0866(05)80008-9

10.1038/40122

10.3189/172756402781817833

10.1007/s00445‐003‐0295‐9

Gudmundsson M. T., 2005, Hættumat vegna eldgosa og hlaupa frá vestanverðum Mýrdalsjökli og Eyjafjallajökli [Risk Assessments on Eruptions and Jökulhlaups From the Western Part of Mýrdalsjökull and Eyjafjallajökull], 11

10.3189/172756407782282444

Gudmundsson M. T., 2008, Volcanic hazards in Iceland, Jökull, 58, 251, 10.33799/jokull2008.58.251

10.3402/polar.v30i0.7282

10.1007/s004450050187

10.1029/2006JF000540

10.1016/j.jvolgeores.2007.10.012

10.1080/02626660209492944

Jóhannesson T., 2011, LiDAR mapping of the Snæfellsjökull ice cap, western Iceland, Jökull, 61, 19, 10.33799/jokull2011.61.019

10.1144/gsjgs.124.1.0197

10.1029/98GL50567

10.1007/s00445‐012‐0583‐3

10.1016/j.jvolgeores.2009.10.015

10.1029/2011JB008829

Larsen G.(1999) Gosið í Eyjafjallajökli 1821–23. Stutt samantekt á framvindu og áhrifum gossins samkvæmt lýsingum [The eruption of Eyjafjallajökull 1821–23. A short summary of course of events and effects based on contemporary accounts] RH‐28‐99 14 pp. Sci. Inst. Reykjavik.

Larsen G., 2000, Holocene eruptions within the Katla volcanic system, south Iceland: Characteristics and environmental impact, Jökull, 49, 1, 10.33799/jokull2000.49.001

10.1191/095968399669624108

Loughlin S. C., 2002, Volcano Ice Interactions on Earth and Mars, 149

10.1029/2004GL021615

10.5194/tc‐4‐13‐2010

10.1007/BF00641384

10.1127/1432‐8364/2010/0060

Óskarsson B. V.(2008) The Skerin ridge on Eyjafjallajökull south Iceland: Morphology and magma‐ice interaction in an ice‐confined silicic fissure eruption MS thesis Univ. of Iceland Reykjavik.

Paterson W. S. B., 2006, The Physics of Glaciers

10.1007/3‐540‐27129‐5_8

10.1016/0377-0273(90)90082-Q

Rist S., 1981, Jöklabreytingar [Glacier variations] 1964/65–1973/74(10 ár), 1974/75–1977/78(4 ár) og 1978/79, Jökull, 31, 37, 10.33799/jokull1981.31.037o

Roberts M. J. G.Sigurðsson O.Sigurðsson E.Pagneux T.Jóhannesson S.Zóphóníasson M. T.Guðmundsson A. J.Russell Á. G.Gylfason andF.Höskuldsson(2011) The April 2010 eruption of Eyjafjallajökull volcano: Glacial flooding and attendant hazards abstract V18S1‐1330 presented at XXV IUGG General Assembly Melbourne Vic. Australia 28 June to 7 July.

10.3189/172756407782282417

10.1016/j.jvolgeores.2005.11.010

10.1038/nature09558

10.1016/j.earscirev.2005.09.004

10.1080/01431160802168186

Strachan S. M.(2001) A geophysical investigation of the Eyjafjallajökull glaciovolcanic system South Iceland using radio echo sounding PhD thesis Dep. of Geogr. Univ. of Edinburgh Edinburgh U. K.

10.1016/0377‐0273(90)90088‐W

10.1017/S0260305500015494

10.1016/0377‐0273(94)90043‐4

10.1029/2006JB004523

10.1016/S0037‐0738(01)00251‐2

Vallance J. W., 2000, Encyclopedia of Volcanoes, 601

Wilson L., 2002, Ice‐Volcano Interaction on Earth and Mars, 5

10.1029/140GM03