Subsystems and independence in relativistic microscopic physics

Stephen J. Summers1
1Department of Mathematics, University of Florida, Gainesville, FL 32611, USA

Tài liệu tham khảo

Araki, 1999 Borchers, 1967, A remark on a theorem of B. Misra, Communications in Mathematical Physics, 4, 315, 10.1007/BF01653645 Bratteli, 1979 Bratteli, 1981 Buchholz, 1974, Product states for local algebras, Communications in Mathematical Physics, 36, 287, 10.1007/BF01646201 Buchholz, 1994, On the manifestations of particles Buchholz, 1996, Quarks, gluons, colour: Facts or fiction?, Nuclear Physics B, 469, 333, 10.1016/0550-3213(96)00143-5 Buchholz, 1987, The universal structure of local algebras, Communications in Mathematical Physics, 111, 123, 10.1007/BF01239019 Buchholz, 1990, Nuclear maps and modular structures I: General properties, Journal of Functional Analysis, 88, 233, 10.1016/0022-1236(90)90104-S Buchholz, 1990, Nuclear maps and modular structures, II: Applications to quantum field theory, Communications in Mathematical Physics, 129, 115, 10.1007/BF02096782 Buchholz, 1986, On Noether's theorem in quantum field theory, Annals of Physics, 170, 1, 10.1016/0003-4916(86)90086-2 Buchholz, 1986, Local properties of equilibrium states and the particle spectrum in quantum field theory, Letters in Mathematical Physics, 11, 51, 10.1007/BF00417464 Buchholz, 1989, On the existence of equilibrium states in local quantum field theory, Communications in Mathematical Physics, 121, 255, 10.1007/BF01217805 Buchholz, 2004, Modular nuclearity and localization, Annales Henri Poincaré, 5, 1065, 10.1007/s00023-004-0190-8 Buchholz, 1991, Dirac versus Wigner: Towards a universal particle concept in local quantum field theory, Physics Letters B, 267, 377, 10.1016/0370-2693(91)90949-Q Buchholz, 2004, Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties, Journal of Mathematical Physics, 45, 4810, 10.1063/1.1804230 Buchholz, 2005, Quantum statistics and locality, Physics Letters A, 337, 17, 10.1016/j.physleta.2005.01.055 Buchholz, 1986, Causal independence and the energy-level density of states in local quantum field theory, Communications in Mathematical Physics, 106, 321, 10.1007/BF01454978 Buchholz, 1991, Generalized nuclearity conditions and the split property in quantum field theory, Letters in Mathematical Physics, 23, 159, 10.1007/BF00703730 Buchholz, 1994, There are no causality problems for Fermi's two-atom system, Physical Review Letters, 73, 613, 10.1103/PhysRevLett.73.613 Busch, 1987, Quantum observables: Compatibility versus commutativity and maximal information, Journal of Mathematical Physics, 28, 2866, 10.1063/1.527686 Butterfield, 2007, Stochastic Einstein locality revisited, British Journal of the Philosophy of Science, 58, 805, 10.1093/bjps/axm034 Clifton, 2001, Entanglement and open systems in algebraic quantum field theory, Studies in History and Philosophy of Modern Physics, 32, 1, 10.1016/S1355-2198(00)00033-2 D’Antoni, 1987, Convergence of local charges and continuity properties of W*-inclusions, Communications in Mathematical Physics, 110, 325, 10.1007/BF01207372 D’Antoni, 1984, Charges in spacelike cones, Communications in Mathematical Physics, 94, 537, 10.1007/BF01403886 D’Antoni, 1983, Interpolation by type I factors and the flip automorphism, Journal of Functional Analysis, 51, 361, 10.1016/0022-1236(83)90018-6 Davies, 1976 Doplicher, 1982, Local aspects of superselection rules, Communications in Mathematical Physics, 85, 73, 10.1007/BF02029134 Doplicher, 1983, Local aspects of superselection rules, II, Communications in Mathematical Physics, 88, 399, 10.1007/BF01213216 Doplicher, 1984, Standard and split inclusions of von Neumann algebras, Inventiones Mathematicae, 75, 493, 10.1007/BF01388641 Driessler, 1986, On the connection between quantum fields and von Neumann algebras of local operators, Communications in Mathematical Physics, 105, 49, 10.1007/BF01212341 Florig, 1997, On the statistical independence of algebras of observables, Journal of Mathematical Physics, 38, 1318, 10.1063/1.531812 Fraser, 2008, The fate of “particles” in quantum field theories with interactions, Studies in History and Philosophy of Modern Physics, 39, 841, 10.1016/j.shpsb.2008.05.003 Fredenhagen, 1985, On the modular structure of local algebras of observables, Communications in Mathematical Physics, 97, 79, 10.1007/BF01206179 Haag, 1992 Haag, 1964, An algebraic approach to quantum field theory, Journal of Mathematical Physics, 5, 848, 10.1063/1.1704187 Halvorson, 2002, No place for particles in relativistic quantum theory?, Philosophy of Science, 69, 1, 10.1086/338939 Hamhalter, 2003 Hegerfeldt, 1994, Causality problems for Fermi's two-atom system, Physical Review Letters, 72, 596, 10.1103/PhysRevLett.72.596 Holevo, 1982 Kadison, R. V., & Ringrose, J. R. (1983). Fundamentals of the theory of operator algebras (Vol. I). Orlando: Academic Press. Kadison, R. V., & Ringrose, J. R. (1986). Fundamentals of the theory of operator algebras (Vol. II). Orlando: Academic Press. Keyl, 2002, Fundamentals of quantum information theory, Physics Reports, 369, 431, 10.1016/S0370-1573(02)00266-1 Kraus, K. (1983). States, effects and operations. In Lecture notes in physics (Vol. 170) 190. Berlin, Heidelberg, New York: Springer. Kuckert, 2000, Localization regions of local observables, Communications in Mathematical Physics, 215, 197, 10.1007/s002200000313 Lahti, 2003, Coexistence and joint measurability in quantum mechanics, International Journal of Theoretical Physics, 42, 893, 10.1023/A:1025406103210 Lahti, 1997, Coexistent observables and effects in quantum mechanics, Reports in Mathematical Physics, 39, 339, 10.1016/S0034-4877(97)89752-2 Lechner, 2005, On the existence of local observables in theories with a factorizing S-matrix, Journal of Physics A, 38, 3045, 10.1088/0305-4470/38/13/015 Lechner, 2008, Construction of quantum field theories with factorizing S-matrices, Communications in Mathematical Physics, 277, 821, 10.1007/s00220-007-0381-5 Ludwig, G. (1983). Foundations of quantum mechanics (Vol. I). Berlin, Heidelberg, New York: Springer. Ludwig, G. (1985). An axiomatic basis for quantum mechanics (Vol. I). Berlin, Heidelberg, New York: Springer. Narnhofer, 1994, Entropy density for relativistic quantum field theory, Reviews in Mathematical Physics, 6, 1127, 10.1142/S0129055X94000390 Narnhofer, 2002, Entanglement, split and nuclearity in quantum field theory, Reports in Mathematical Physics, 50, 111, 10.1016/S0034-4877(02)80048-9 Neumann, 1983, Causality between preparation and registration processes in relativistic quantum theory, International Journal of Theoretical Physics, 22, 781, 10.1007/BF02114662 von Neumann, 1932 von Neumann, J. (1962). Collected works. In A. H. Taub (Ed.) (Vol. I). New York, Oxford: Pergamon Press. Peres, 2004, Quantum information and relativity theory, Reviews of Modern Physics, 76, 93, 10.1103/RevModPhys.76.93 Rédei, 1997 Rédei, 2002, Local primitive causality and the common cause principle in quantum field theory, Foundations of Physics, 32, 335, 10.1023/A:1014869211488 Rédei, 2007, Quantum probability theory, Studies in History and Philosophy of Modern Physics, 38, 390, 10.1016/j.shpsb.2006.05.006 Rédei, M., & Summers, S. J. (2008). When are quantum systems operationally independent? Preprint arXiv:0810.5294. Summers, 1982, Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model, Communications in Mathematical Physics, 86, 111, 10.1007/BF01205664 Summers, 1990, On the independence of local algebras in quantum field theory, Reviews in Mathematical Physics, 2, 201, 10.1142/S0129055X90000090 Summers, S. J. (2008a). Yet more ado about nothing: The remarkable relativistic vacuum state. Preprint arXiv:0802.1854. Summers, S. J. (2008b). Constructive AQFT. Web information available at URL: 〈http://www.math.ufl.edu/∼sjs/construction.html〉. Summers, 1988, Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions, Annales de l’Institut Henri Poincaré, Physique Théorique, 49, 215 Takesaki, M. (1979). Theory of operator algebras (Vol. I). Berlin, Heidelberg, New York: Springer. Takesaki, M. (2003). Theory of operator algebras (Vols. II and III). Berlin, Heidelberg, New York: Springer. Werner, 1987, Local preparability of states and the split property in quantum field theory, Letters in Mathematical Physics, 13, 325, 10.1007/BF00401161