Subsystems and independence in relativistic microscopic physics
Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics - Tập 40 - Trang 133-141 - 2009
Tài liệu tham khảo
Araki, 1999
Borchers, 1967, A remark on a theorem of B. Misra, Communications in Mathematical Physics, 4, 315, 10.1007/BF01653645
Bratteli, 1979
Bratteli, 1981
Buchholz, 1974, Product states for local algebras, Communications in Mathematical Physics, 36, 287, 10.1007/BF01646201
Buchholz, 1994, On the manifestations of particles
Buchholz, 1996, Quarks, gluons, colour: Facts or fiction?, Nuclear Physics B, 469, 333, 10.1016/0550-3213(96)00143-5
Buchholz, 1987, The universal structure of local algebras, Communications in Mathematical Physics, 111, 123, 10.1007/BF01239019
Buchholz, 1990, Nuclear maps and modular structures I: General properties, Journal of Functional Analysis, 88, 233, 10.1016/0022-1236(90)90104-S
Buchholz, 1990, Nuclear maps and modular structures, II: Applications to quantum field theory, Communications in Mathematical Physics, 129, 115, 10.1007/BF02096782
Buchholz, 1986, On Noether's theorem in quantum field theory, Annals of Physics, 170, 1, 10.1016/0003-4916(86)90086-2
Buchholz, 1986, Local properties of equilibrium states and the particle spectrum in quantum field theory, Letters in Mathematical Physics, 11, 51, 10.1007/BF00417464
Buchholz, 1989, On the existence of equilibrium states in local quantum field theory, Communications in Mathematical Physics, 121, 255, 10.1007/BF01217805
Buchholz, 2004, Modular nuclearity and localization, Annales Henri Poincaré, 5, 1065, 10.1007/s00023-004-0190-8
Buchholz, 1991, Dirac versus Wigner: Towards a universal particle concept in local quantum field theory, Physics Letters B, 267, 377, 10.1016/0370-2693(91)90949-Q
Buchholz, 2004, Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties, Journal of Mathematical Physics, 45, 4810, 10.1063/1.1804230
Buchholz, 2005, Quantum statistics and locality, Physics Letters A, 337, 17, 10.1016/j.physleta.2005.01.055
Buchholz, 1986, Causal independence and the energy-level density of states in local quantum field theory, Communications in Mathematical Physics, 106, 321, 10.1007/BF01454978
Buchholz, 1991, Generalized nuclearity conditions and the split property in quantum field theory, Letters in Mathematical Physics, 23, 159, 10.1007/BF00703730
Buchholz, 1994, There are no causality problems for Fermi's two-atom system, Physical Review Letters, 73, 613, 10.1103/PhysRevLett.73.613
Busch, 1987, Quantum observables: Compatibility versus commutativity and maximal information, Journal of Mathematical Physics, 28, 2866, 10.1063/1.527686
Butterfield, 2007, Stochastic Einstein locality revisited, British Journal of the Philosophy of Science, 58, 805, 10.1093/bjps/axm034
Clifton, 2001, Entanglement and open systems in algebraic quantum field theory, Studies in History and Philosophy of Modern Physics, 32, 1, 10.1016/S1355-2198(00)00033-2
D’Antoni, 1987, Convergence of local charges and continuity properties of W*-inclusions, Communications in Mathematical Physics, 110, 325, 10.1007/BF01207372
D’Antoni, 1984, Charges in spacelike cones, Communications in Mathematical Physics, 94, 537, 10.1007/BF01403886
D’Antoni, 1983, Interpolation by type I factors and the flip automorphism, Journal of Functional Analysis, 51, 361, 10.1016/0022-1236(83)90018-6
Davies, 1976
Doplicher, 1982, Local aspects of superselection rules, Communications in Mathematical Physics, 85, 73, 10.1007/BF02029134
Doplicher, 1983, Local aspects of superselection rules, II, Communications in Mathematical Physics, 88, 399, 10.1007/BF01213216
Doplicher, 1984, Standard and split inclusions of von Neumann algebras, Inventiones Mathematicae, 75, 493, 10.1007/BF01388641
Driessler, 1986, On the connection between quantum fields and von Neumann algebras of local operators, Communications in Mathematical Physics, 105, 49, 10.1007/BF01212341
Florig, 1997, On the statistical independence of algebras of observables, Journal of Mathematical Physics, 38, 1318, 10.1063/1.531812
Fraser, 2008, The fate of “particles” in quantum field theories with interactions, Studies in History and Philosophy of Modern Physics, 39, 841, 10.1016/j.shpsb.2008.05.003
Fredenhagen, 1985, On the modular structure of local algebras of observables, Communications in Mathematical Physics, 97, 79, 10.1007/BF01206179
Haag, 1992
Haag, 1964, An algebraic approach to quantum field theory, Journal of Mathematical Physics, 5, 848, 10.1063/1.1704187
Halvorson, 2002, No place for particles in relativistic quantum theory?, Philosophy of Science, 69, 1, 10.1086/338939
Hamhalter, 2003
Hegerfeldt, 1994, Causality problems for Fermi's two-atom system, Physical Review Letters, 72, 596, 10.1103/PhysRevLett.72.596
Holevo, 1982
Kadison, R. V., & Ringrose, J. R. (1983). Fundamentals of the theory of operator algebras (Vol. I). Orlando: Academic Press.
Kadison, R. V., & Ringrose, J. R. (1986). Fundamentals of the theory of operator algebras (Vol. II). Orlando: Academic Press.
Keyl, 2002, Fundamentals of quantum information theory, Physics Reports, 369, 431, 10.1016/S0370-1573(02)00266-1
Kraus, K. (1983). States, effects and operations. In Lecture notes in physics (Vol. 170) 190. Berlin, Heidelberg, New York: Springer.
Kuckert, 2000, Localization regions of local observables, Communications in Mathematical Physics, 215, 197, 10.1007/s002200000313
Lahti, 2003, Coexistence and joint measurability in quantum mechanics, International Journal of Theoretical Physics, 42, 893, 10.1023/A:1025406103210
Lahti, 1997, Coexistent observables and effects in quantum mechanics, Reports in Mathematical Physics, 39, 339, 10.1016/S0034-4877(97)89752-2
Lechner, 2005, On the existence of local observables in theories with a factorizing S-matrix, Journal of Physics A, 38, 3045, 10.1088/0305-4470/38/13/015
Lechner, 2008, Construction of quantum field theories with factorizing S-matrices, Communications in Mathematical Physics, 277, 821, 10.1007/s00220-007-0381-5
Ludwig, G. (1983). Foundations of quantum mechanics (Vol. I). Berlin, Heidelberg, New York: Springer.
Ludwig, G. (1985). An axiomatic basis for quantum mechanics (Vol. I). Berlin, Heidelberg, New York: Springer.
Narnhofer, 1994, Entropy density for relativistic quantum field theory, Reviews in Mathematical Physics, 6, 1127, 10.1142/S0129055X94000390
Narnhofer, 2002, Entanglement, split and nuclearity in quantum field theory, Reports in Mathematical Physics, 50, 111, 10.1016/S0034-4877(02)80048-9
Neumann, 1983, Causality between preparation and registration processes in relativistic quantum theory, International Journal of Theoretical Physics, 22, 781, 10.1007/BF02114662
von Neumann, 1932
von Neumann, J. (1962). Collected works. In A. H. Taub (Ed.) (Vol. I). New York, Oxford: Pergamon Press.
Peres, 2004, Quantum information and relativity theory, Reviews of Modern Physics, 76, 93, 10.1103/RevModPhys.76.93
Rédei, 1997
Rédei, 2002, Local primitive causality and the common cause principle in quantum field theory, Foundations of Physics, 32, 335, 10.1023/A:1014869211488
Rédei, 2007, Quantum probability theory, Studies in History and Philosophy of Modern Physics, 38, 390, 10.1016/j.shpsb.2006.05.006
Rédei, M., & Summers, S. J. (2008). When are quantum systems operationally independent? Preprint arXiv:0810.5294.
Summers, 1982, Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model, Communications in Mathematical Physics, 86, 111, 10.1007/BF01205664
Summers, 1990, On the independence of local algebras in quantum field theory, Reviews in Mathematical Physics, 2, 201, 10.1142/S0129055X90000090
Summers, S. J. (2008a). Yet more ado about nothing: The remarkable relativistic vacuum state. Preprint arXiv:0802.1854.
Summers, S. J. (2008b). Constructive AQFT. Web information available at URL: 〈http://www.math.ufl.edu/∼sjs/construction.html〉.
Summers, 1988, Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions, Annales de l’Institut Henri Poincaré, Physique Théorique, 49, 215
Takesaki, M. (1979). Theory of operator algebras (Vol. I). Berlin, Heidelberg, New York: Springer.
Takesaki, M. (2003). Theory of operator algebras (Vols. II and III). Berlin, Heidelberg, New York: Springer.
Werner, 1987, Local preparability of states and the split property in quantum field theory, Letters in Mathematical Physics, 13, 325, 10.1007/BF00401161