Molecular dynamics simulation to assess the effect of temperature on diffusion coefficients of different ions and water molecules in C-S-H

Springer Science and Business Media LLC - Tập 22 - Trang 483-497 - 2017
B. Zehtab1, A. Tarighat1
1Department of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Tóm tắt

Diffusion is a particle transportation process beginning from one point of a system to another through random molecular motion. This process depends on various parameters like temperature, concentration gradient, and particle size. The objective of this article is to assess the variation of diffusion coefficients of water molecules, chloride and sodium ions against different temperatures in calcium silicate hydrates (C-S-H) through molecular dynamics simulation. A uniform sodium chloride solution is modeled between cement hydrate layers with no concentration gradient. In such a solution, temperature could affect diffusion process in a significant manner. The two most important crystalline mineral analogues of C-S-H, tobermorite and jennite, are applied in this simulation. Diffusion coefficients of different ions and water molecules are found in different temperatures. It is revealed that diffusion coefficient is higher at high temperatures. Activation energies of chloride and sodium ions transport in cement hydrates are calculated through Arrhenius law. Output values of diffusion coefficients and activation energies are compared to previous experimental and simulation results in the related literature. A multi-scale analysis is run to estimate the penetration depth of $\mbox{Cl}^{-}$ ions in cement paste through Fick’s second law.

Tài liệu tham khảo

Accelrys, I.: Materials Studio. Accelrys Software Inc. (2010) Al-Ostaz, A., Wu, W., Cheng, A.-D., Song, C.: A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement. Composites, Part B, Eng. 41(7), 543–549 (2010) ASTM: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Committee C-9 on Concrete. Concrete Aggregates (2012) Bauchy, M., Qomi, M., Pellenq, R., Ulm, F.: Is cement a glassy material. In: Computational Modelling of Concrete Structures, p. 169 (2014) Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., Polder, R.B.: Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley, Weinheim (2013) Bonaccorsi, E., Merlino, S., Taylor, H.: The crystal structure of jennite, \(\mbox{Ca}_{9}\mbox{Si}_{6}\mbox{O}_{18}(\mbox{OH})_{6}\cdot8\mbox{H}_{2}\mbox{O}\). Cem. Concr. Res. 34(9), 1481–1488 (2004) Care, S.: Effect of temperature on porosity and on chloride diffusion in cement pastes. Constr. Build. Mater. 22(7), 1560–1573 (2008) Chen, Q., Yao, Q., Liu, Y.-L., Han, Q.-F., Ding, F.: Temperature-dependent dissolution and diffusion of H isotopes in iron for nuclear energy applications: first-principles and vibration spectrum predictions. Int. J. Hydrog. Energy 42(16), 11560–11573 (2017) Collepardi, M., Turriziani, R.: Penetration of chloride ions in cement pastes and in concrete. J. Am. Ceram. Soc. 55(10), 534–535 (1972) Du, X., Jin, L., Zhang, R.: Chloride diffusivity in saturated cement paste subjected to external mechanical loadings. Ocean Eng. 95, 1–10 (2015) Einstein, A.: Investigations on the Theory of the Brownian Movement. Courier Corporation, North Chelmsford (1956) El Amrani, S., Kolb, M.: Molecular dynamics simulations in zeolites: from deterministic to random motion. J. Chem. Phys. 98(2), 1509–1513 (1993) Escalante-Garcia, J., Mendoza, G., Sharp, J.: Indirect determination of the Ca/Si ratio of the CSH gel in Portland cements. Cem. Concr. Res. 29(12), 1999–2003 (1999) Fleshman, A.M., Forsythe, G.E., Petrowsky, M., Frech, R.: Describing temperature-dependent self-diffusion coefficients and fluidity of 1- and 3-alcohols with the compensated Arrhenius formalism. J. Phys. Chem. B 120(37), 9959–9968 (2016) Fratini, E., Faraone, A., Ridi, F., Chen, S.-H., Baglioni, P.: Hydration water dynamics in tricalcium silicate pastes by time-resolved incoherent elastic neutron scattering. J. Phys. Chem. C 117(14), 7358–7364 (2013) Garboczi, E., Bentz, D.: Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 27(8), 2083–2092 (1992) Gopalakrishnan, K., Birgisson, B., Taylor, P., Attoh-Okine, N.O.: Nanotechnology in Civil Infrastructure. Springer, Berlin (2011) Goss, D.J., Petrucci, R.H.: General Chemistry Principles & Modern Applications. Pearson/Prentice Hall, Upper Saddle River (2007). Petrucci, Harwood, Herring, Madura: Study Guide Goto, S., Roy, D.M.: Diffusion of ions through hardened cement pastes. Cem. Concr. Res. 11(5), 751–757 (1981) Haile, J.: Molecular Dynamics Simulation, vol. 18. Wiley, New York (1992) Hamid, S.: The crystal structure of the 11 Å natural tobermorite \(\mbox{Ca}_{2. 25}[\mbox{Si}_{3}\mbox{O}_{7.5}(\mbox{OH})_{1.5}]\cdot1\mbox{H}_{2}\mbox{O}\). Z. Kristallogr. 154(1–4), 189–198 (1981) Hendriks, C.A., Worrell, E., De Jager, D., Blok, K., Riemer, P.: Emission reduction of greenhouse gases from the cement industry. In: Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, pp. 939–944 (1998) Hou, D., Li, Z.: Molecular dynamics study of water and ions transport in nano-pore of layered structure: a case study of tobermorite. Microporous Mesoporous Mater. 195, 9–20 (2014) Hou, D., Zhu, Y., Lu, Y., Li, Z.: Mechanical properties of calcium silicate hydrate (C-S-H) at nano-scale: a molecular dynamics study. Mater. Chem. Phys. 146(3), 503–511 (2014) Jagannadham, V.: How do we introduce the Arrhenius pre-exponential factor (A) to graduate students? Creative Education 1(2), 128 (2010) Keffer, D.: The Working Man’s Guide to Obtaining Self Diffusion Coefficients from Molecular Dynamics Simulations. Department of Chemical Engineering, University of Tennessee, Knoxville (2001) Korb, J.-P., Monteilhet, L., McDonald, P., Mitchell, J.: Microstructure and texture of hydrated cement-based materials: a proton field cycling relaxometry approach. Cem. Concr. Res. 37(3), 295–302 (2007) Kumar, A., Walder, B.J., Kunhi Mohamed, A., Hofstetter, A., Srinivasan, B., Rossini, A.J., Scrivener, K., Emsley, L., Bowen, P.: The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121(32), 17188–17196 (2017) Lee, S.-H., Park, D.-K., Kang, D.-B.: Molecular dynamics simulations for transport coefficients of liquid argon: new approaches. Bull. Korean Chem. Soc. 24(2), 178–182 (2003) Lei, Y., Zhang, Q., Nielsen, C., He, K.: An inventory of primary air pollutants and \(\mbox{CO}_{2}\) emissions from cement production in China, 1990–2020. Atmos. Environ. 45(1), 147–154 (2011) Levine, R.D.: Molecular Reaction Dynamics. Cambridge University Press, Cambridge (2009) Logan, S.: The origin and status of the Arrhenius equation. J. Chem. Educ. 59(4), 279 (1982) Lothenbach, B., Nonat, A.: Calcium silicate hydrates: solid and liquid phase composition. Cem. Concr. Res. 78, 57–70 (2015) Loya, A., Stair, J.L., Jafri, A.R., Yang, K., Ren, G.: A molecular dynamic investigation of viscosity and diffusion coefficient of nanoclusters in hydrocarbon fluids. Comput. Mater. Sci. 99, 242–246 (2015) Malone, L.J., Dolter, T.: Basic Concepts of Chemistry. Wiley, Somerset (2008) Manzano, H., Dolado, J., Guerrero, A., Ayuela, A.: Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels. Phys. Status Solidi A 204(6), 1775–1780 (2007) Manzano Moro, H.: Atomistic simulation studies of the cement paste components. Servicio Editorial de la Universidad del País Vasco/Euskal Herriko Unibertsitatearen Argitalpen Zerbitzua (2014) Marrink, S.-J., Berendsen, H.J.: Simulation of water transport through a lipid membrane. J. Phys. Chem. 98(15), 4155–4168 (1994) McGrath, P.: Development of test methods for predicting chloride ingress into high performance concrete. Doctor of Philosophy Thesis, Department of Civil Engineering, University of Toronto (1996) Menzinger, M., Wolfgang, R.: The meaning and use of the Arrhenius activation energy. Angew. Chem., Int. Ed. Engl. 8(6), 438–444 (1969) Merlino, S., Bonaccorsi, E., Armbruster, T.: Tobermorites: their real structure and order-disorder (OD) character. Am. Mineral. 84(10), 1613–1621 (1999) Mindess, S., Young, J.F., Darwin, D.: Concrete (2003) Miyandehi, B.M., Behforouz, B., Khotbehsara, E.M., Balgouri, H.A., Fathi, S., Khotbehsara, M.M.: An experimental investigation on nano-\(\mbox{Al}_{2}\mbox{O}_{3}\) based self-compacting mortar. J. Am. Sci. 10(11) (2014) Mon, E.E., Hamamoto, S., Kawamoto, K., Komatsu, T., Moldrup, P.: Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay. Environ. Earth Sci. 75(7), 562 (2016) Murray, S., Subramani, V., Selvam, R., Hall, K.: Molecular dynamics to understand the mechanical behavior of cement paste. Transp. Res. Rec. 2142, 75–82 (2010) Page, C., Short, N., El Tarras, A.: Diffusion of chloride ions in hardened cement pastes. Cem. Concr. Res. 11(3), 395–406 (1981) Pan, T., Liu, Y.: Computational molecular analysis of chloride transport in hydrated cement paste. Transp. Res. Rec. 2113, 31–40 (2009) Pan, T., Xia, K., Wang, L.: Chloride binding to calcium silicate hydrates (CSH) in cement paste: a molecular dynamics analysis. Int. J. Pavement Eng. 11(5), 367–379 (2010) Park, B., Jang, S.Y., Cho, J.-Y., Kim, J.Y.: A novel short-term immersion test to determine the chloride ion diffusion coefficient of cementitious materials. Constr. Build. Mater. 57, 169–178 (2014) Pivonka, P., Hellmich, C., Smith, D.: Microscopic effects on chloride diffusivity of cement pastes—a scale-transition analysis. Cem. Concr. Res. 34(12), 2251–2260 (2004) Qomi, M.A., Krakowiak, K.J., Bauchy, M., Stewart, K., Shahsavari, R., Jagannathan, D., Brommer, D.B., Baronnet, A., Buehler, M.J., Yip, S.: Combinatorial molecular optimization of cement hydrates. Nat. Commun. 5, 4960 (2014) Repp, J., Steurer, W., Scivetti, I., Persson, M., Gross, L., Meyer, G.: Charge-state-dependent diffusion of individual gold adatoms on ionic thin NaCl films. Phys. Rev. Lett. 117(14), 146102 (2016) Richardson, I.: The nature of CSH in hardened cements. Cem. Concr. Res. 29(8), 1131–1147 (1999) Richardson, I.G.: Model structures for C-(A)-SH(I). Acta Crystallogr., Sect. B Struct. Sci. Cryst. Eng. Mat. 70(6), 903–923 (2014) Roosz, C., Gaboreau, S., Grangeon, S., Prêt, D., Montouillout, V., Maubec, N., Ory, S., Blanc, P., Vieillard, P., Henocq, P.: Distribution of water in synthetic calcium silicate hydrates. Langmuir 32(27), 6794–6805 (2016) Samson, E., Marchand, J.: Modeling the effect of temperature on ionic transport in cementitious materials. Cem. Concr. Res. 37(3), 455–468 (2007) Shahsavari, R., Pellenq, R.J.-M., Ulm, F.-J.: Empirical force fields for complex hydrated calcio-silicate layered materials. Phys. Chem. Chem. Phys. 13(3), 1002–1011 (2011) Sun, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998) Takiya, H., Watanabe, N., Kozaki, T., Sato, S.: Effects of water-to-cement ratio and temperature on diffusion of water in hardened cement pastes. J. Nucl. Sci. Technol. 52(5), 728–738 (2015) Tang, L.: Electrically accelerated methods for determining chloride diffusivity in concrete—current development. Mag. Concr. Res. 48(176), 173–179 (1996) Tarighat, A., Zehtab, B.: Structural reliability of reinforced concrete beams/columns under simultaneous static loads and steel reinforcement corrosion. Arab. J. Sci. Eng., 1–14 (2016) Tarighat, A., Zehtab, B., Tavakoli, D.: An introductory review of simulation methods for the structure of cementitious material hydrates at different length scales. Pertanika J. Sci. Technol. 24(1), 27–39 (2016) Vathonne, E., Andersson, D.A., Freyss, M., Perriot, R., Cooper, M.W., Stanek, C.R., Bertolus, M.: Determination of krypton diffusion coefficients in uranium dioxide using atomic scale calculations. Inorg. Chem. 56(1), 125–137 (2016) Wei-Zhong, L., Cong, C., Jian, Y.: Molecular dynamics simulation of self-diffusion coefficient and its relation with temperature using simple Lennard-Jones potential. Heat Transf. Asian Res. 37(2), 86–93 (2008) Wieser, M.E., Holden, N., Coplen, T.B., Böhlke, J.K., Berglund, M., Brand, W.A., De Bièvre, P., Gröning, M., Loss, R.D., Meija, J.: Atomic weights of the elements 2011 (IUPAC technical report). Pure Appl. Chem. 85(5), 1047–1078 (2013) Worrell, E., Martin, N., Price, L.: Potentials for energy efficiency improvement in the US cement industry. Energy 25(12), 1189–1214 (2000) Yang, C., Cho, S.: An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials. Mater. Chem. Phys. 81(1), 116–125 (2003) Yang, J.Z., Liu, Q.L., Wang, H.T.: Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation. J. Membr. Sci. 291(1), 1–9 (2007) Yoon, S., Monteiro, P.J.: Molecular dynamics study of water molecules in interlayer of 14 Å tobermorite. J. Adv. Concr. Technol. 11(6), 180–188 (2013) Yuan, Q., Shi, C., De Schutter, G., Audenaert, K.: Effect of temperature on transport of chloride ions in concrete. In: Concrete Repair, Rehabilitation and Retrofitting II, pp. 159–160 (2008) Zheng, J., Zhou, X.: Analytical solution for the chloride diffusivity of hardened cement paste. J. Mater. Civ. Eng. 20(5), 384–391 (2008) Zhou, B.-C., Shang, S.-L., Wang, Y., Liu, Z.-K.: Diffusion coefficients of alloying elements in dilute Mg alloys: a comprehensive first-principles study. Acta Mater. 103, 573–586 (2016)