Elaboration and properties of novel biobased nanocomposites with halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids

Polymer - Tập 55 - Trang 5226-5234 - 2014
Juliano Marini1,2, Eric Pollet1, Luc Averous1, Rosario Elida Suman Bretas2
1BioTeam/ECPM-ICPEES, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, Cedex 2, France
2Department of Materials Engineering, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Carlos, Brazil

Tài liệu tham khảo

Babb, 2012, Polyurethanes from renewable resources, Adv Polym Sci, 245, 315, 10.1007/12_2011_130 Bueno-Ferrer, 2012, Strucuture and morphology of new bio-based thermoplastic polyurethanes obtained from dimeric fatty acids, Macromol Mater Eng, 297, 777, 10.1002/mame.201100278 Bueno-Ferrer, 2012, Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids, Polym Degrad Stab, 97, 1964, 10.1016/j.polymdegradstab.2012.03.002 Jordan, 2005, Experimental trends in polymer nanocomposites – a review, Mat Sci Eng A, 393, 1, 10.1016/j.msea.2004.09.044 Beatrice, 2010, Rheological, mechanical, optical, and transport properties of blown films of polyamide 6/residual monomer/montmorillonite nanocomposites, J Appl Polym Sci, 116, 3581 Tjong, 2006, Structural and mechanical properties of polymer nanocomposites, Mat Sci Eng R, 53, 73, 10.1016/j.mser.2006.06.001 Leszczynska, 2007, Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement, Thermochim Acta, 453, 75, 10.1016/j.tca.2006.11.002 Riva, 2002, Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites, Polym Degrad Stab, 77, 299, 10.1016/S0141-3910(02)00065-4 Choudalakis, 2009, Permeability of polymer/clay nanocomposites: a review, Eur Polym J, 45, 967, 10.1016/j.eurpolymj.2009.01.027 Lotti, 2008, Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites, Eur Polym J, 44, 1346, 10.1016/j.eurpolymj.2008.02.014 Corrêa, 2012, Elaboration and characterization of nano-biocomposites based on plasticized poly(hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite, J Polym Environ, 20, 283, 10.1007/s10924-011-0379-0 Dennis, 2001, Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites, Polymer, 42, 9513, 10.1016/S0032-3861(01)00473-6 Marini, 2013, Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites, Polym Eng Sci, 53, 1512, 10.1002/pen.23405 Marini, 2010, Effect of EVA as compatibilizer on the mechanical properties, permeability characteristics, lamellae orientation, and long period of blown films of HDPE/clay nanocomposites, J Appl Polym Sci, 118, 3340, 10.1002/app.32356 Zeng, 2010, Interfacial interactions in clay-based polymer nanocomposites: effect of surfactant, Adv Mater Res, 129, 607, 10.4028/www.scientific.net/AMR.129-131.607 Handge, 2010, Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheological properties, Polymer, 51, 2690, 10.1016/j.polymer.2010.04.041 Du, 2010, Newly emerging applications of halloysite nanotubes: a review, Polym Int, 59, 574, 10.1002/pi.2754 Lecouvet, 2011, Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites, Polym Degrad Stab, 96, 226, 10.1016/j.polymdegradstab.2010.11.006 Guo, 2009, Structure and performance of polyamide 6/halloysite nanotubes nanocomposites, Polym J, 41, 835, 10.1295/polymj.PJ2009110 Deng, 2008, Toughening epoxies with halloysite nanotubes, Polymer, 49, 5119, 10.1016/j.polymer.2008.09.027 Du, 2006, Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene), Eur Polym J, 42, 1362, 10.1016/j.eurpolymj.2005.12.006 Prashantha, 2011, Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties, Exp Polym Lett, 5, 295, 10.3144/expresspolymlett.2011.30 Lee, 2013, Thermal, mechanical, and rheological properties of poly(-caprolactone)/halloysite nanotube nanocomposites, J Appl Polym Sci, 128, 2807, 10.1002/app.38457 Rooj, 2011, Tube-like halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties, Eur Polym J, 47, 1746, 10.1016/j.eurpolymj.2011.06.007 Vergaro, 2010, Cytocompatibility and uptake of halloysite clay nanotubes, Biomacromolecules, 11, 820, 10.1021/bm9014446 Osman, 2012, Structure-property relationships in biomedical thermoplastic polyurethane nanocomposites, Macromolecules, 45, 198, 10.1021/ma202189e Zheng, 2007, A strategy for dimensional percolation in sheared nanorod dispersions, Adv Mat, 19, 4038, 10.1002/adma.200700011 Yuan, 2008, Functionalization of halloysite nanotubes by grafting with -aminopropyltriethoxysilane, J Phys Chem C, 112, 15742, 10.1021/jp805657t Hablot, 2008, Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties, Macromol Mater Eng, 293, 922, 10.1002/mame.200800185 Hojabri, 2009, Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and, characterization, Biomacromolecules, 10, 884, 10.1021/bm801411w Bird, 1987, Dynamics of polymeric fluids, vol. 1 Bretas, 2005 Yudin, 2005, Synthesis and rheological properties of oligoimide/montmorillonite nanocomposites, Polymer, 46, 10866, 10.1016/j.polymer.2005.08.087 Zhao, 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion, Polymer, 46, 8641, 10.1016/j.polymer.2005.04.038 Chattopadhyay, 2009, Thermal stability and flame retardancy of polyurethanes, Prog Polym Sci, 34, 1068, 10.1016/j.progpolymsci.2009.06.002