Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process

Bulletin of Materials Science - Tập 39 - Trang 469-478 - 2016
PURUSHOTTAM KUMAR SINGH1, PANKAJ KUMAR1, MANOWAR HUSSAIN1, ALOK KUMAR DAS1, GANESH CHANDRA NAYAK2
1Department of Mechanical Engineering, Indian School of Mines, Dhanbad, India
2Department of Applied Chemistry, Indian School of Mines, Dhanbad, India

Tóm tắt

In the present study, cupric oxide (CuO) nanoparticles were synthesized by electrochemical discharge process using strong base electrolytes. The experiments were carried out separately using NaOH and KOH electrolytes. The mass output rate and the crystal size were obtained with variation of the rotation speed of magnetic stirrer for both types of electrolytes. The mass output rate of CuO nanoparticles increased with the increase in the speed of rotation, and, after an optimum speed, it started decreasing. However, the size of the particles reduced with the increase of the rotation speed. The crystal plane of the obtained CuO nanoparticles was similar for both the electrolytes whereas the yield of nanoparticles was higher in KOH as compared with NaOH under the same experiment conditions. In this set of experiments, the maximum output rates obtained were 21.66 mg h−1 for NaOH and 24.66 mg h−1 for KOH at 200 rpm for a single discharge arrangement. The average crystal size of CuO particles obtained was in the range of 13–18 nm for KOH electrolyte and 15–20 nm for NaOH electrolyte. Scanning electron microscopy images revealed that flower-like and caddice clew-shaped CuO nanocrystalline particles were synthesized by the electrochemical discharge process. Fourier transform infrared spectrum showed that the CuO nanoparticles have a pure and monolithic phase. UV–vis–NIR spectroscopy was used to monitor oxidation course of Cu → CuO and the band gap energy was measured as 2 and 2.6 eV for CuO nanoparticle synthesized in NaOH and KOH solutions, respectively.

Tài liệu tham khảo

Horikoshi S and Serpone N (Eds) 2013 Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (John Wiley & Sons) Hett A 2004 Nanotechnology: Small Matter, Many Unknowns (Zurich, Swiss Reinsurance Company) Poddar P, Telem-Shafir T, Fried T and Markovich G 2002 Phys. Rev. B 66 060403 Kumar P and Kumar R 2015 Thin Solid Films doi: 10.1016/ j.tsf.2015.08.047 Edgeworth J P, Wilson N R and Macpherson J V 2007 Small 5 860 Goupalov S V 2005 Phys. Rev. B 8 085420 Bavykin D V, Gordeev S N, Moskalenko A V, Lapkin A A and Walsh F C 2005 J. Phys. Chem. B 18 8565 Chen S, Duan J, Ran J, Jaroniec M and Qiao S Z 2013 Energy Environ. Sci. 6 3693 Wang Z L 2004 J. Phys.: Condens. Matter 16 829 Fernandez-Garcia M, Martinez-Arias A, Hanson J C and Rodriguez J A 2004 Chem. Rev. 104 4063 Vayssieres L 2004 Int. J. Nanotechnol. 1 1 Jun Y-W, Choi J-S and Cheon J 2006 Angew. Chem. Int. Ed. 45 3414 Chen X and Mao S S 2007 Chem. Rev. 107 2891 Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L and Muller R N 2008 Chem. Rev. 108 2064 Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A and Sberveglieri G 2009 Prog. Mater. Sci. 54 1 Dutta S, Chattopadhyay S, Sarkar A, Chakrabarti M, Sanyal D and Jana D 2009 Prog. Mater. Sci. 54 89 Barth S, Hernandez-Ramirez F, Holmes J D and Romano-Rodriguez A 2010 Prog. Mater. Sci. 55 563 Singh D P and Ali N 2010 Sci. Adv. Mater. 2 295 Li Y and Somorjai G A 2010 Nano Lett. 10 2289 Hu J, Chen M, Fang X and Wu L 2011 Chem. Soc. Rev. 40 5472 Devan R S, Patil R A, Lin J-H and Ma Y-R 2012 Adv. Funct. Mater. 22 3326 Tiwari J N, Tiwari R N and Kim K S 2012 Prog. Mater. Sci. 57 724 Spencer M J 2012 Prog. Mater. Sci. 57 437 Park J, Joo J, Kwon S G, Jang Y and Hyeon T 2007 Angew. Chem. Int. Ed. 46 4630 Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A and Kalantar-Zadeh K 2011 Adv. Funct. Mater. 21 2175 MacDonald A H 2001 Nature 414 409 Liu Y, Chu Y, Zhuo Y, Li M, Li L and Dong L 2007 Cryst. Growth Des. 7 467 Vaseem M, Umar A, Kim S H and Hahn Y B 2008 J. Phys. Chem. C 112 5729 Son D I, You C H and Kim T W 2009 Appl. Surf. Sci. 255 8794 Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z and Xin X Q 1999 J. Solid State Chem. 147 516 Tran T H and Nguyen V T 2014 Int. Sch. Res. Notices 2014 Zhang J, Liu J, Peng Q, Wang X and Li Y 2006 Chem. Mater. 18 867 Choi Y-H, Kim D-H, Han H S, Shin S, Hong S-H and Hong K S 2014 Langmuir 30 700 Umar A, Rahman M M, Al-Hajry A and Hahn Y B 2009 Electrochem. Commun. 11 278 Rahman M M, Ahammad A J, Jin J-H, Ahn S J and Lee J-J 2010 Sensors 10 4855 Wang X, Hu C, Liu H, Du G, He X and Xi Y 2010 Sens. Actuators B—Chem. 144 220 Hsu Y-W, Hsu T-K, Sun C-L, Nien Y-T, Pu N-W and Ger M-D 2012 Electrochim. Acta 82 152 Huang J, Dong Z, Li Y, Li J, Wang J, Yang H, Li S, Guo S, Jin J and Li R 2013 Sens. Actuators B—Chem. 182 618 Wang S B, Hsiao C H, Chang S J, Lam K T, Wen K H, Hung S C, Young S J and Huang B R 2011 Sens. Actuators A—Phys. 171 207 Rossi C, Zhang K, Esteve D, Alphonse P, Tailhades P and Vahlas C 2007 J. Microelectromech. Syst. 16 919 Dar M A, Kim Y S, Kim W B, Sohn J M and Shin H S 2008 Appl. Surf. Sci. 254 7477 Zhang X, Shi W, Zhu J, Kharistal D J, Zhao W, Lalia B S, Hng H H and Yan Q 2011 ACS Nano 5 2013 Liu J, Jin J, Deng Z, Huang S-Z, Hu Z-Y, Wang L, Wang C, Chen L-H, Li Y, Tendeloo G V and Su B L 2012 J. Colloid Interface Sci. 384 1 Chang Y N, Zhang M, Xia L, Zhang J and Xing G 2012 Materials 5 2850 Kumar R V, Diamant Y and Gedanken A 2000 Chem. Mater. 12 2301 Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A and Norwig J 2001 Langmuir 17 1406 Ranjbar-Karimi R, Bazmandegan-Shamili A, Aslani A and Kaviani K 2010 Physica B: Condens. Matter 405 3096 Singh I and Bedi R K 2011 Solid State Sci. 13 Anandan S, Lee G J and Wu J J 2012 Ultrason. Sonochem. 19 682 Eshed M, Lellouche J, Matalon S, Gedanken A and Banin E 2012 Langmuir 28 12288 Shui A, Zhu W, Xu L, Qin D and Wang Y 2013 Ceram. Int. 39 8715 Chen Y-J, Meng F-N, Yu H-L, Zhu C-L, Wang T-S, Gao P and Ouyang Q Y 2013 Sens. Actuators B—Chem. 176 15 Yang X-D, Jiang L-L, Mao C-J, Niu H-L, Song J-M and Zhang S-Y 2014 Mater. Lett. 115 121 Sonia S, Jayram N D, Kumar P S, Mangalaraj D, Ponpandian N and Viswanathan C 2014 Superlattices Microstruct. 66 1 Qi X, Huang Y, Klapper M, Boey F, Huang W, Feyter S D, Müllen K and Zhang H 2010 J. Phys. Chem. C 114 13465 Jadhav L D, Patil S P, Chavan A U, Jamale A P and Puri V R 2011 Micro Nano Lett. 6 812 Bayansal F, Kahraman S, Çankaya G, Çetinkara H A, Güder H S and Çakmak H M 2011 J. Alloys Compd. 509 2094 Umadevi M and Christy A J 2013 Spectrochim. Acta Mol. Biomol. Spectrosc. 109 133 Christy A J, Nehru L C and Umadevi M 2013 Powder Technol. 235 783 Naika H R, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D and Nagabhushana H 2015 J. Taibah Univ. Sci. 9 7 Han D, Yang H, Zhu C and Wang F 2008 Powder Technol. 185 286 Zhao Y, Zhu J J, Hong J M, Bian N and Chen H Y 2004 Eur. J. Inorg. Chem. 2004 4072 Dagher S, Haik Y, Ayesh A I and Tit N 2014 J. Lumin. 151 149 Khashan K S, Sulaiman G M and Abdulameer F A 2016 Arab. J. Sci. Eng. 41 301 Jung H J, Yu Y and Choi M Y 2015 Bull. Korean Chem. Soc. 36 3 Maul J, Brito A S, de Oliveira A L M, Lima S J G, Maurera M A M A, Keyson D, Souza A G and Santos I M G 2011 J. Therm. Anal. Calorim. 106 519 Jiang T, Wang Y, Meng D, Wu X, Wang J and Chen J 2014 Appl. Surf. Sci. 311 602 Chiang C-Y, Aroh K and Ehrman S H 2012 Int. J. Hydrogen Energy 37 4871 Yao W-T, Yu S-H, Zhou Y, Jiang J, Wu Q-S, Zhang L and Jiang J 2005 J. Phys. Chem. B 109 14011 Kassaee M Z, Buazar F and Motamedi E 2010 J. Nanomater. 2010 7 Karahaliou P K, Svarnas P, Georga S N, Xanthopoulos N I, Delaportas D, Krontiras C A and Alexandrou I 2012 J. Nanopart. Res. 14 1 Goli M, Haratizadeh H and Abrishami M E 2014 Ceram. Int. 40 16071 Lal A, Bleuler H and Wüthrich R 2008 Electrochem. Commun. 10 488 Wüthrich R and Mandin P 2009 Electrochim. Acta 54 4031 Allagui A and Wüthrich R 2011 Electrochim. Acta 58 12 Culity B D and Stock S R 1978 Principles of X-ray Diffraction (Reading: Addision-Wesley) Wuthrich R and Ziki J D A 2014 Micromachining Using Electrochemical Discharge Phenomenon: Fundamentals and Application of Spark Assisted Chemical Engraving (William Andrew) Cao X D, Kim B H and Chu C N 2009 Precis. Eng. 4 459 Wang H, Xu J Z, Zhu J-J and Chen H-Y 2002 J. Cryst. Growth 244 88 Rehman S, Mumtaz A and Hasanain S K 2011 J. Nanopart. Res. 13 2497 Phoka S, Laokul P, Swatsitang E, Promarak V, Seraphin S and Maensiri S 2009 Mater. Chem. Phys. 1 423 Mohamed R M, Harraz F A and Shawky A 2014 Ceram. Int. 40 2127