Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties

Computers and Chemical Engineering - Tập 103 - Trang 233-274 - 2017
Robert M. Apap1, Ignacio E. Grossmann1
1Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmed, 2000

Ben-Tal, 2009

Ben-Tal, 2004, Adjustable robust solutions of uncertain linear programs, Math. Program., 99, 351, 10.1007/s10107-003-0454-y

Birge, 1997, Stochastic programming computation and applications, INFORMS J. Comput., 9, 111, 10.1287/ijoc.9.2.111

Birge, 2011

Boland, 2008

Boland, 2016, Minimum cardinality non-anticipativity constraint sets for multistage stochastic programming, Math. Program., 157, 69, 10.1007/s10107-015-0970-6

Bruni, 2015, A stochastic programming approach for operating theatre scheduling under uncertainty, IMA J. Manage. Math., 26, 99, 10.1093/imaman/dpt027

Calfa, 2015, Data-driven individual and joint chance-constrained optimization via kernel smoothing, Comput. Chem. Eng., 78, 51, 10.1016/j.compchemeng.2015.04.012

Carøe, 1999, Dual decomposition in stochastic integer programming, Oper. Res. Lett., 24, 37, 10.1016/S0167-6377(98)00050-9

Choi, 2004, Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application, Comput. Chem. Eng., 28, 1039, 10.1016/j.compchemeng.2003.09.024

Christian, 2015, Heuristic solution approaches to the pharmaceutical R&D pipeline management problem, Comput. Chem. Eng., 74, 34, 10.1016/j.compchemeng.2014.12.014

Colvin, 2008, A stochastic programming approach for clinical trial planning in new drug development, Comput. Chem. Eng., 32, 2626, 10.1016/j.compchemeng.2007.11.010

Colvin, 2009, Scheduling of testing tasks and resource planning in new product development using stochastic programming, Comput. Chem. Eng., 33, 964, 10.1016/j.compchemeng.2008.09.010

Colvin, 2010, Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming, Eur. J. Oper. Res., 203, 205, 10.1016/j.ejor.2009.07.022

Colvin, 2011, R&D pipeline management: task interdependencies and risk management, Eur. J. Oper. Res., 215, 616, 10.1016/j.ejor.2011.06.023

Dupačová, 2006, Optimization under exogenous and endogenous uncertainty, 131

Escudero, 2007, The value of the stochastic solution in multistage problems, TOP, 15, 48, 10.1007/s11750-007-0005-4

Escudero, 2009, BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems, TOP, 17, 96, 10.1007/s11750-009-0083-6

Escudero, 2013, On multistage mixed 0–1 optimization under a mixture of exogenous and endogenous uncertainty in a risk averse environment

Escudero, 2013, Scenario cluster decomposition of the Lagrangian dual in two-stage stochastic mixed 0–1 optimization, Comput. Oper. Res., 40, 362, 10.1016/j.cor.2012.07.009

Escudero, 2016, Cluster Lagrangean decomposition in multistage stochastic optimization, Comput. Oper. Res., 67, 48, 10.1016/j.cor.2015.09.005

Fisher, 1985, An applications oriented guide to Lagrangian relaxation, Interfaces, 15, 10, 10.1287/inte.15.2.10

Flach, 2010

Goel, 2004, A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves, Comput. Chem. Eng., 28, 1409, 10.1016/j.compchemeng.2003.10.005

Goel, 2006, A class of stochastic programs with decision dependent uncertainty, Math. Program., 108, 355, 10.1007/s10107-006-0715-7

Goel, 2006, A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves, Comput. Chem. Eng., 30, 1076, 10.1016/j.compchemeng.2006.02.006

Grossmann, 2016, Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng., 91, 3, 10.1016/j.compchemeng.2016.03.002

Guignard, 2003, Lagrangean relaxation, TOP, 11, 151, 10.1007/BF02579036

Gupta, 2011, Solution strategies for multistage stochastic programming with endogenous uncertainties, Comput. Chem. Eng., 35, 2235, 10.1016/j.compchemeng.2010.11.013

Gupta, 2014, A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties, Comput. Chem. Eng., 62, 62, 10.1016/j.compchemeng.2013.11.011

Gupta, 2014, Multistage stochastic programming approach for offshore oilfield infrastructure planning under production sharing agreements and endogenous uncertainties, Comput. Chem. Eng., 124, 180

Held, 2005, Heuristics for multi-stage interdiction of stochastic networks, J. Heuristics, 11, 483, 10.1007/s10732-005-3122-y

Hellemo, 2016

Hooshmand Khaligh, 2016, A mathematical model for vehicle routing problem under endogenous uncertainty, Int. J. Prod. Res., 54, 579, 10.1080/00207543.2015.1057625

Hooshmand Khaligh, 2016, Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty, Optim. Methods Softw., 31, 359, 10.1080/10556788.2015.1088850

Jonsbråten, 1998

Jonsbråten, 1998, A class of stochastic programs with decision dependent random elements, Ann. Oper. Res., 82, 83, 10.1023/A:1018943626786

Lappas, 2016, Multi-stage adjustable robust optimization for process scheduling under uncertainty, AIChE J., 62, 1646, 10.1002/aic.15183

Laumanns, 2014, Distribution shaping and scenario bundling for stochastic programs with endogenous uncertainty

Li, 2008, Chance constrained programming approach to process optimization under uncertainty, Comput. Chem. Eng., 32, 25, 10.1016/j.compchemeng.2007.05.009

Liu, 1996, Optimization in process planning under uncertainty, Ind. Eng. Chem. Res., 35, 4154, 10.1021/ie9504516

Liu, 2016, Decomposition algorithms for two-stage chance-constrained programs, Math. Program., 157, 219, 10.1007/s10107-014-0832-7

Maggioni, 2014, Bounds in multistage linear stochastic programming, J. Optim. Theory Appl., 163, 200, 10.1007/s10957-013-0450-1

Mercier, 2011, An anytime multistep anticipatory algorithm for online stochastic combinatorial optimization, Ann. Oper. Res., 184, 233, 10.1007/s10479-010-0798-7

Oliveira, 2013, A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations, Comput. Chem. Eng., 50, 184, 10.1016/j.compchemeng.2012.10.012

Peeta, 2010, Pre-disaster investment decisions for strengthening a highway network, Comput. Oper. Res., 37, 1708, 10.1016/j.cor.2009.12.006

Pflug, 1990, On-line optimization of simulated Markovian processes, Math. Oper. Res., 15, 381, 10.1287/moor.15.3.381

Powell, 2011

Raman, 1991, Relation between MILP modelling and logical inference for chemical process synthesis, Comput. Chem. Eng., 15, 73, 10.1016/0098-1354(91)87007-V

Rockafellar, 1991, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16, 119, 10.1287/moor.16.1.119

Ruszczyński, 1997, Decomposition methods in stochastic programming, Math. Program., 79, 333, 10.1007/BF02614323

Sahinidis, 2004, Optimization under uncertainty: state-of-the-art and opportunities, Comput. Chem. Eng., 28, 971, 10.1016/j.compchemeng.2003.09.017

Schultz, 2003, Stochastic programming with integer variables, Math. Program., 97, 285, 10.1007/s10107-003-0445-z

Solak, 2010, Optimization of R&D project portfolios under endogenous uncertainty, Eur. J. Oper. Res., 207, 420, 10.1016/j.ejor.2010.04.032

Tarhan, 2008, A multistage stochastic programming approach with strategies for uncertainty reduction in the synthesis of process networks with uncertain yields, Comput. Chem. Eng., 32, 766, 10.1016/j.compchemeng.2007.03.003

Tarhan, 2009, Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty, Ind. Eng. Chem. Res., 48, 3078, 10.1021/ie8013549

Tarhan, 2013, Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution, Ann. Oper. Res., 203, 141, 10.1007/s10479-011-0855-x

Terrazas-Moreno, 2012, An efficient method for optimal design of large-scale integrated chemical production sites with endogenous uncertainty, Comput. Chem. Eng., 37, 89, 10.1016/j.compchemeng.2011.10.005

Tong, 2012, Planning under demand and yield uncertainties in an oil supply chain, Ind. Eng. Chem. Res., 51, 814, 10.1021/ie200194w

Trespalacios, 2014, Review of mixed-integer nonlinear and generalized disjunctive programming methods, Chem. Ing. Tech., 86, 991, 10.1002/cite.201400037

Vayanos, 2011, Decision rules for information discovery in multi-stage stochastic programming, 7368

Viswanath, 2004

Webster, 2012, An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty, Comput. Manage. Sci., 9, 339, 10.1007/s10287-012-0147-1

Williams, 2013

Zhang, 2016, On the relation between flexibility analysis and robust optimization for linear systems, AIChE J., 62, 3109, 10.1002/aic.15221