Models and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, 2000
Ben-Tal, 2009
Ben-Tal, 2004, Adjustable robust solutions of uncertain linear programs, Math. Program., 99, 351, 10.1007/s10107-003-0454-y
Birge, 1997, Stochastic programming computation and applications, INFORMS J. Comput., 9, 111, 10.1287/ijoc.9.2.111
Birge, 2011
Boland, 2008
Boland, 2016, Minimum cardinality non-anticipativity constraint sets for multistage stochastic programming, Math. Program., 157, 69, 10.1007/s10107-015-0970-6
Bruni, 2015, A stochastic programming approach for operating theatre scheduling under uncertainty, IMA J. Manage. Math., 26, 99, 10.1093/imaman/dpt027
Calfa, 2015, Data-driven individual and joint chance-constrained optimization via kernel smoothing, Comput. Chem. Eng., 78, 51, 10.1016/j.compchemeng.2015.04.012
Carøe, 1999, Dual decomposition in stochastic integer programming, Oper. Res. Lett., 24, 37, 10.1016/S0167-6377(98)00050-9
Choi, 2004, Dynamic programming in a heuristically confined state space: a stochastic resource-constrained project scheduling application, Comput. Chem. Eng., 28, 1039, 10.1016/j.compchemeng.2003.09.024
Christian, 2015, Heuristic solution approaches to the pharmaceutical R&D pipeline management problem, Comput. Chem. Eng., 74, 34, 10.1016/j.compchemeng.2014.12.014
Colvin, 2008, A stochastic programming approach for clinical trial planning in new drug development, Comput. Chem. Eng., 32, 2626, 10.1016/j.compchemeng.2007.11.010
Colvin, 2009, Scheduling of testing tasks and resource planning in new product development using stochastic programming, Comput. Chem. Eng., 33, 964, 10.1016/j.compchemeng.2008.09.010
Colvin, 2010, Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming, Eur. J. Oper. Res., 203, 205, 10.1016/j.ejor.2009.07.022
Colvin, 2011, R&D pipeline management: task interdependencies and risk management, Eur. J. Oper. Res., 215, 616, 10.1016/j.ejor.2011.06.023
Dupačová, 2006, Optimization under exogenous and endogenous uncertainty, 131
Escudero, 2007, The value of the stochastic solution in multistage problems, TOP, 15, 48, 10.1007/s11750-007-0005-4
Escudero, 2009, BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0–1 problems, TOP, 17, 96, 10.1007/s11750-009-0083-6
Escudero, 2013, On multistage mixed 0–1 optimization under a mixture of exogenous and endogenous uncertainty in a risk averse environment
Escudero, 2013, Scenario cluster decomposition of the Lagrangian dual in two-stage stochastic mixed 0–1 optimization, Comput. Oper. Res., 40, 362, 10.1016/j.cor.2012.07.009
Escudero, 2016, Cluster Lagrangean decomposition in multistage stochastic optimization, Comput. Oper. Res., 67, 48, 10.1016/j.cor.2015.09.005
Fisher, 1985, An applications oriented guide to Lagrangian relaxation, Interfaces, 15, 10, 10.1287/inte.15.2.10
Flach, 2010
Goel, 2004, A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves, Comput. Chem. Eng., 28, 1409, 10.1016/j.compchemeng.2003.10.005
Goel, 2006, A class of stochastic programs with decision dependent uncertainty, Math. Program., 108, 355, 10.1007/s10107-006-0715-7
Goel, 2006, A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves, Comput. Chem. Eng., 30, 1076, 10.1016/j.compchemeng.2006.02.006
Grossmann, 2016, Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty, Comput. Chem. Eng., 91, 3, 10.1016/j.compchemeng.2016.03.002
Gupta, 2011, Solution strategies for multistage stochastic programming with endogenous uncertainties, Comput. Chem. Eng., 35, 2235, 10.1016/j.compchemeng.2010.11.013
Gupta, 2014, A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties, Comput. Chem. Eng., 62, 62, 10.1016/j.compchemeng.2013.11.011
Gupta, 2014, Multistage stochastic programming approach for offshore oilfield infrastructure planning under production sharing agreements and endogenous uncertainties, Comput. Chem. Eng., 124, 180
Held, 2005, Heuristics for multi-stage interdiction of stochastic networks, J. Heuristics, 11, 483, 10.1007/s10732-005-3122-y
Hellemo, 2016
Hooshmand Khaligh, 2016, A mathematical model for vehicle routing problem under endogenous uncertainty, Int. J. Prod. Res., 54, 579, 10.1080/00207543.2015.1057625
Hooshmand Khaligh, 2016, Efficient constraint reduction in multistage stochastic programming problems with endogenous uncertainty, Optim. Methods Softw., 31, 359, 10.1080/10556788.2015.1088850
Jonsbråten, 1998
Jonsbråten, 1998, A class of stochastic programs with decision dependent random elements, Ann. Oper. Res., 82, 83, 10.1023/A:1018943626786
Lappas, 2016, Multi-stage adjustable robust optimization for process scheduling under uncertainty, AIChE J., 62, 1646, 10.1002/aic.15183
Laumanns, 2014, Distribution shaping and scenario bundling for stochastic programs with endogenous uncertainty
Li, 2008, Chance constrained programming approach to process optimization under uncertainty, Comput. Chem. Eng., 32, 25, 10.1016/j.compchemeng.2007.05.009
Liu, 1996, Optimization in process planning under uncertainty, Ind. Eng. Chem. Res., 35, 4154, 10.1021/ie9504516
Liu, 2016, Decomposition algorithms for two-stage chance-constrained programs, Math. Program., 157, 219, 10.1007/s10107-014-0832-7
Maggioni, 2014, Bounds in multistage linear stochastic programming, J. Optim. Theory Appl., 163, 200, 10.1007/s10957-013-0450-1
Mercier, 2011, An anytime multistep anticipatory algorithm for online stochastic combinatorial optimization, Ann. Oper. Res., 184, 233, 10.1007/s10479-010-0798-7
Oliveira, 2013, A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations, Comput. Chem. Eng., 50, 184, 10.1016/j.compchemeng.2012.10.012
Peeta, 2010, Pre-disaster investment decisions for strengthening a highway network, Comput. Oper. Res., 37, 1708, 10.1016/j.cor.2009.12.006
Pflug, 1990, On-line optimization of simulated Markovian processes, Math. Oper. Res., 15, 381, 10.1287/moor.15.3.381
Powell, 2011
Raman, 1991, Relation between MILP modelling and logical inference for chemical process synthesis, Comput. Chem. Eng., 15, 73, 10.1016/0098-1354(91)87007-V
Rockafellar, 1991, Scenarios and policy aggregation in optimization under uncertainty, Math. Oper. Res., 16, 119, 10.1287/moor.16.1.119
Ruszczyński, 1997, Decomposition methods in stochastic programming, Math. Program., 79, 333, 10.1007/BF02614323
Sahinidis, 2004, Optimization under uncertainty: state-of-the-art and opportunities, Comput. Chem. Eng., 28, 971, 10.1016/j.compchemeng.2003.09.017
Schultz, 2003, Stochastic programming with integer variables, Math. Program., 97, 285, 10.1007/s10107-003-0445-z
Solak, 2010, Optimization of R&D project portfolios under endogenous uncertainty, Eur. J. Oper. Res., 207, 420, 10.1016/j.ejor.2010.04.032
Tarhan, 2008, A multistage stochastic programming approach with strategies for uncertainty reduction in the synthesis of process networks with uncertain yields, Comput. Chem. Eng., 32, 766, 10.1016/j.compchemeng.2007.03.003
Tarhan, 2009, Stochastic programming approach for the planning of offshore oil or gas field infrastructure under decision-dependent uncertainty, Ind. Eng. Chem. Res., 48, 3078, 10.1021/ie8013549
Tarhan, 2013, Computational strategies for non-convex multistage MINLP models with decision-dependent uncertainty and gradual uncertainty resolution, Ann. Oper. Res., 203, 141, 10.1007/s10479-011-0855-x
Terrazas-Moreno, 2012, An efficient method for optimal design of large-scale integrated chemical production sites with endogenous uncertainty, Comput. Chem. Eng., 37, 89, 10.1016/j.compchemeng.2011.10.005
Tong, 2012, Planning under demand and yield uncertainties in an oil supply chain, Ind. Eng. Chem. Res., 51, 814, 10.1021/ie200194w
Trespalacios, 2014, Review of mixed-integer nonlinear and generalized disjunctive programming methods, Chem. Ing. Tech., 86, 991, 10.1002/cite.201400037
Vayanos, 2011, Decision rules for information discovery in multi-stage stochastic programming, 7368
Viswanath, 2004
Webster, 2012, An approximate dynamic programming framework for modeling global climate policy under decision-dependent uncertainty, Comput. Manage. Sci., 9, 339, 10.1007/s10287-012-0147-1
Williams, 2013