A class of integral equations and approximation of p-Laplace equations

Springer Science and Business Media LLC - Tập 37 - Trang 485-522 - 2009
Hitoshi Ishii1, Gou Nakamura2
1Department of Mathematics, Waseda University, Tokyo, Japan
2Department of Pure and Applied Mathematics, Waseda University, Tokyo, Japan

Tóm tắt

Let $${\Omega\subset\mathbb{R}^n}$$ be a bounded domain, and let 1 < p < ∞ and σ < p. We study the nonlinear singular integral equation $$ M[u](x) = f_0(x)\quad {\rm in}\,\Omega$$ with the boundary condition u = g 0 on ∂Ω, where $${f_0\in C(\overline\Omega)}$$ and $${g_0\in C(\partial\Omega)}$$ are given functions and M is the singular integral operator given by $$M[u](x)={\rm p.v.} \int\limits_{B(0,\rho(x))} \frac{p-\sigma}{|z|^{n+\sigma}}|u(x+z)-u(x)|^{p-2} (u(x+z)-u(x))\,{\rm dz},$$ with some choice of $${\rho\in C(\overline\Omega)}$$ having the property, 0 < ρ(x) ≤ dist (x, ∂Ω). We establish the solvability (well-posedness) of this Dirichlet problem and the convergence uniform on $${\overline\Omega}$$ , as σ → p, of the solution u σ of the Dirichlet problem to the solution u of the Dirichlet problem for the p-Laplace equation νΔ p u = f 0 in Ω with the Dirichlet condition u = g 0 on ∂Ω, where the factor ν is a positive constant (see (7.2)).

Tài liệu tham khảo

Andreu F., Mazón J.M., Rossi J.D., Toledo J.: A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 40(5), 1815–1851 (2008) Andreu F., Mazón J.M., Rossi J.D., Toledo J.: A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. 90, 201–227 (2008) Barles G., Chasseigne E., Imbert C.: Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008) Barles G., Imbert C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(3), 567–585 (2008) Crandall M.G., Ishii H., Lions P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992) Caffarelli L., Silvestre L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62(5), 597–728 (2009) DiBenedetto E.: C 1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983) Duistermaat, J.J., Kolk, J.A.C.: Multidimensional real analysis. II. Integration, Cambridge Studies in Advanced Mathematics, 87. Cambridge University Press, Cambridge (2004) Forcadel N., Imbert C., Monneau R.: Homogenization of the dislocation dynamics and of some particle systems with two-body interactions. Discrete Contin. Dyn. Syst. 23(3), 785–826 (2009) Ishii, H., Matsumura, H.: Non-local Hamilton–Jacobi equations arising in dislocation dynamics, to appear in Z. Anal. Anwendungen Ishii H., Souganidis P.E.: Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J. (2) 47(2), 227–250 (1995) Juutinen P., Lindqvist P., Manfredi J.J.: On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33(3), 699–717 (2001) Lewis J.L.: Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32(6), 849–858 (1983) Ohnuma M., Sato K.: Singular degenerate parabolic equations with applications to the p-Laplace diffusion equation. Comm. Partial Differential Equations 22(3–4), 381–411 (1997) Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51(1), 126–150 (1984)