The Anti-inflammatory Immune Regulation Induced by Butyrate Is Impaired in Inflamed Intestinal Mucosa from Patients with Ulcerative Colitis
Tóm tắt
Altered gut microbiota composition and reduced levels of short-chain fatty acids, such as butyrate, have been identified as key components of ulcerative colitis (UC). We aimed to determine and compare effects of butyrate on the intestinal immune profile of UC patients with active disease and non-inflamed controls. Biopsies were cultivated during 6 h with or without butyrate. Cytokines were measured in supernatants and mRNA gene expression was analyzed in biopsies using Qiagen RT2 Profiler PCR Arrays. The intestinal immune profile of cultured biopsies, as determined by mRNA gene expression and secreted cytokines, differed between inflamed UC samples and controls. Principal component analysis revealed that addition of butyrate differently regulated mRNA expression in inflamed biopsies from UC and non-inflamed biopsies from controls. Highly discriminant and predictive orthogonal partial least squares discriminant analyses identified 29 genes for UC (R2 = 0.94, Q2 = 0.86) and 23 genes for controls (R2 = 0.90, Q2 = 0.71) that were most regulated by butyrate. UC displayed more up-regulation of genes as compared with controls, and controls displayed the most prominent down-regulations. Ingenuity Pathway Analysis identified a down regulation of the Neuroinflammation Signaling pathway and predicted inhibition of the categories Inflammatory response, cellular movement, and cellular development as top diseases and functions, respectively, for controls but not for UC. In conclusion, butyrate has a different effect on gene regulation and more potently down-regulates gene expression of inflammatory pathways in non-inflamed controls than in inflamed tissue of UC patients. These discrepancies may at least partly explain why anticipated anti-inflammatory effects of local butyrate induction or supplementation are not always obtained.
Tài liệu tham khảo
Machiels, K., M. Joossens, J. Sabino, V. de Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. van Immerseel, K. Verbeke, M. Ferrante, J. Verhaegen, P. Rutgeerts, and S. Vermeire. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63 (8): 1275–1283.
Takahashi, K., A. Nishida, T. Fujimoto, M. Fujii, M. Shioya, H. Imaeda, O. Inatomi, S. Bamba, M. Sugimoto, and A. Andoh. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93 (1): 59–65.
Huda-Faujan, N., A.S. Abdulamir, A.B. Fatimah, et al. 2010. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochemistry Journal 4: 53–58.
Kumari, R., V. Ahuja, and J. Paul. 2013. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World Journal of Gastroenterology : WJG 19 (22): 3404–3414.
Sealy, L., and R. Chalkley. 1978. The effect of sodium butyrate on histone modification. Cell 14 (1): 115–121.
Lee, C., B.G. Kim, J.H. Kim, J. Chun, J.P. Im, and J.S. Kim. 2017. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology 51: 47–56.
Zhang, M., Q. Zhou, R.G. Dorfman, X. Huang, T. Fan, H. Zhang, J. Zhang, and C. Yu. 2016. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterology 16 (1): 84.
Simeoli, R., G. Mattace Raso, C. Pirozzi, A. Lama, A. Santoro, R. Russo, T. Montero-Melendez, R. Berni Canani, A. Calignano, M. Perretti, and R. Meli. 2017. An orally administered butyrate-releasing derivative reduces neutrophil recruitment and inflammation in dextran sulphate sodium-induced murine colitis. British Journal of Pharmacology 174 (11): 1484–1496.
Geirnaert, A., M. Calatayud, C. Grootaert, D. Laukens, S. Devriese, G. Smagghe, M. de Vos, N. Boon, and T. van de Wiele. 2017. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific Reports 7 (1): 11450.
Schwab, M., V. Reynders, S. Loitsch, D. Steinhilber, O. Schröder, and J. Stein. 2008. The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 125 (2): 241–251.
Schauber, J., C. Svanholm, S. Termen, et al. 2003. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52 (5): 735–741.
Lee, S.K., T. Il Kim, Y.K. Kim, C.H. Choi, K.M. Yang, B. Chae, and W.H. Kim. 2005. Cellular differentiation-induced attenuation of LPS response in HT-29 cells is related to the down-regulation of TLR4 expression. Biochemical and Biophysical Research Communications 337 (2): 457–463.
Nastasi, C., S. Fredholm, A. Willerslev-Olsen, M. Hansen, C.M. Bonefeld, C. Geisler, M.H. Andersen, N. Ødum, and A. Woetmann. 2017. Butyrate and propionate inhibit antigen-specific CD8(+) T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports 7 (1): 14516.
Arpaia, N., C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J.R. Cross, K. Pfeffer, P.J. Coffer, and A.Y. Rudensky. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (7480): 451–455.
Furusawa, Y., Y. Obata, S. Fukuda, T.A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, M. Takahashi, N.N. Fukuda, S. Murakami, E. Miyauchi, S. Hino, K. Atarashi, S. Onawa, Y. Fujimura, T. Lockett, J.M. Clarke, D.L. Topping, M. Tomita, S. Hori, O. Ohara, T. Morita, H. Koseki, J. Kikuchi, K. Honda, K. Hase, and H. Ohno. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (7480): 446–450.
Yan, H., and K.M. Ajuwon. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12 (6): e0179586.
Inan, M.S., R.J. Rasoulpour, L. Yin, A.K. Hubbard, D.W. Rosenberg, and C. Giardina. 2000. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118 (4): 724–734.
Assisi, R.F., and Group GS. 2008. Combined butyric acid/mesalazine treatment in ulcerative colitis with mild-moderate activity. Results of a multicentre pilot study. Minerva Gastroenterologica e Dietologica 54 (3): 231–238.
Di Sabatino, A., R. Morera, R. Ciccocioppo, et al. 2005. Oral butyrate for mildly to moderately active Crohn’s disease. Alimentary Pharmacology & Therapeutics 22 (9): 789–794.
Vernia, P., A. Marcheggiano, R. Caprilli, et al. 1995. Short-chain fatty acid topical treatment in distal ulcerative colitis. Alimentary Pharmacology & Therapeutics 9 (3): 309–313.
Vernia, P., V. Annese, G. Bresci, G. d'Albasio, R. D'Incà, S. Giaccari, M. Ingrosso, C. Mansi, G. Riegler, D. Valpiani, R. Caprilli, and Gruppo Italiano per lo Studio del Colon and del Retto. 2003. Topical butyrate improves efficacy of 5-ASA in refractory distal ulcerative colitis: results of a multicentre trial. European Journal of Clinical Investigation 33 (3): 244–248.
Steinhart, A.H., T. Hiruki, A. Brzezinski, and J.P. Baker. 1996. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Alimentary Pharmacology & Therapeutics 10 (5): 729–736.
Vernia, P., G. Monteleone, G. Grandinetti, G. Villotti, E. di Giulio, G. Frieri, A. Marcheggiano, F. Pallone, R. Caprilli, and A. Torsoli. 2000. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study. Digestive Diseases and Sciences 45 (5): 976–981.
Narula, N., Z. Kassam, Y. Yuan, J.F. Colombel, C. Ponsioen, W. Reinisch, and P. Moayyedi. 2017. Systematic review and meta-analysis: fecal microbiota transplantation for treatment of active ulcerative colitis. Inflammatory Bowel Diseases 23 (10): 1702–1709.
Costello, S.P., P.A. Hughes, O. Waters, R.V. Bryant, A.D. Vincent, P. Blatchford, R. Katsikeros, J. Makanyanga, M.A. Campaniello, C. Mavrangelos, C.P. Rosewarne, C. Bickley, C. Peters, M.N. Schoeman, M.A. Conlon, I.C. Roberts-Thomson, and J.M. Andrews. 2019. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 321 (2): 156–164.
Schroeder, K.W., W.J. Tremaine, and D.M. Ilstrup. 1987. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. New England Journal of Medicine. 317 (26): 1625–1629.
Mavroudis, G., M.K. Magnusson, S. Isaksson, et al. 2019. Mucosal and systemic immune profiles differ during early and late phase of the disease in patients with active ulcerative colitis. Journal of Crohn's & Colitis.
R Core Team. R. 2014. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing http://www.R-project.org/.
Eriksson, L.K.-W.N., J. Trygg, C. Wikström, and S. Wold. 2006. Multi- and megavariate data analysis: part I: basic principles and applications. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-12895. Umeå: Umetrics Inc.
Segain, J.P. 2000. Raingeard de la Bletiere D, Bourreille A, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47 (3): 397–403.
Russo, I., A. Luciani, P. De Cicco, et al. 2012. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS One 7 (3): e32841.
Schwab, M., V. Reynders, S. Ulrich, N. Zahn, J. Stein, and O. Schröder. 2006. PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis 11 (10): 1801–1811.
Liu, L., L. Li, J. Min, J. Wang, H. Wu, Y. Zeng, S. Chen, and Z. Chu. 2012. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cellular Immunology 277 (1-2): 66–73.
Zhao, Y., F. Chen, W. Wu, M. Sun, A.J. Bilotta, S. Yao, Y. Xiao, X. Huang, T.D. Eaves-Pyles, G. Golovko, Y. Fofanov, W. D'Souza, Q. Zhao, Z. Liu, and Y. Cong. 2018. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunology 11 (3): 752–762.
De Preter, V., I. Arijs, K. Windey, et al. 2012. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflammatory Bowel Diseases 18 (6): 1127–1136.
Vancamelbeke, M., T. Laeremans, W. Vanhove, et al. 2019. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. Journal of Crohn's & Colitis.
Ferrer-Picon, E., I. Dotti, A.M. Corraliza, et al. 2019. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease. Inflammatory Bowel Diseases.
Weingarden, A.R., and B.P. Vaughn. 2017. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 8 (3): 238–252.
Fuentes, S., N.G. Rossen, M.J. van der Spek, J.H. Hartman, L. Huuskonen, K. Korpela, J. Salojärvi, S. Aalvink, W.M. de Vos, G.R. D'Haens, E.G. Zoetendal, and C.Y. Ponsioen. 2017. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME Journal 11 (8): 1877–1889.