k-Modules Over Linear Spaces by n-Linear Maps Admitting a Multiplicative Basis

Algebras and Representation Theory - Tập 22 - Trang 615-626 - 2018
Elisabete Barreiro1, Ivan Kaygorodov2, José M. Sánchez3
1CMUC, Universidade de Coimbra, Coimbra, Portugal
2CMCC, Universidade Federal do ABC, Santo André, Brazil
3Departamento de Matemáticas, Universidad de Cádiz, Cádiz, España

Tóm tắt

We study the structure of certain k-modules 𝕍 over linear spaces 𝕎 with restrictions neither on the dimensions of 𝕍 and 𝕎 nor on the base field 𝔽. A basis $\mathfrak {B} = \{v_{i}\}_{i\in I}$ of 𝕍 is called multiplicative with respect to the basis $\mathfrak {B}^{\prime } = \{w_{j}\}_{j \in J}$ of 𝕎 if for any $\sigma \in S_{n}, i_{1},\dots ,i_{k} \in I$ and $j_{k + 1},\dots , j_{n} \in J$ we have $[v_{i_{1}},\dots , v_{i_{k}}, w_{j_{k + 1}}, \dots , w_{j_{n}}]_{\sigma } \in \mathbb {F}v_{r_{\sigma }}$ for some rσ ∈ I. We show that if 𝕍 admits a multiplicative basis then it decomposes as the direct sum $\mathbb {V} = \bigoplus _{\alpha } V_{\alpha }$ of well described k-submodules Vα each one admitting a multiplicative basis. Also the minimality of 𝕍 is characterized in terms of the multiplicative basis and it is shown that the above direct sum is by means of the family of its minimal k-submodules, admitting each one a multiplicative basis. Finally we study an application of k-modules with a multiplicative basis over an arbitrary n-ary algebra with multiplicative basis.

Tài liệu tham khảo

Abdesselam, B.: The twisted Heisenberg algebra e h,w(h(4)). J. Math. Phys. 38(12), 6045–6060 (1997) Adashev, J.Q., Khudoyberdiyev, A.K.h., Omirov, B.A.: Classifications of some classes of Zinbiel algebras. J. Gen. Lie Theory Appl. 4, 10 (2010). Art. ID S090601 Albeverio, S., Ayupov, S.h.A., Omirov, B.A., Khudoyberdiyev, A.K.h.: n-Dimensional filiform Leibniz algebras of length (n − 1) and their derivations. J. Algebra 319(6), 2471–2488 (2008) Bai, R., Wu, Y.: Constructions of 3-Lie algebras. Linear Multilinear Algebra 63(11), 2171–2186 (2015) Balogh, Z.: Further results on a filtered multiplicative basis of group algebras. Math. Commun. 12(2), 229–238 (2007) Bautista, R., Gabriel, P., Roiter, A.V., Salmeron, L.: Representation-finite algebras and multiplicative basis. Invent. Math. 81, 217–285 (1985) Beites, P., Kaygorodov, I., Popov, Yu.: Generalized derivations of multiplicative n-ary Hom-O color algebras. Bulletin of the Malaysian Mathematical Sciences Society. https://doi.org/10.1007/s40840-017-0486-8 (2017) Bovdi, V.: On a filtered multiplicative basis of group algebras. Arch. Math. (Basel) 74(2), 81–88 (2000) Bovdi, V.: On a filtered multiplicative bases of group algebras. II. Algebr. Represent. Theory 6(3), 353–368 (2003) Bovdi, V., Grishkov, A., Siciliano, S.: Filtered multiplicative bases of restricted enveloping algebras. Algebr. Represent. Theory 14(4), 601–608 (2011) Bovdi, V., Grishkov, A., Siciliano, S.: On filtered multiplicative bases of some associative algebras. Algebr. Represent. Theory. 18(2), 297–306 (2015) Calderón, A.: On split Lie algebras with a symmetric root system. Proc. Indian Acad. Sci. Math. Sci. 118(3), 351–356 (2008) Calderón, A.J., Navarro, F.J., Sánchez, J.M.: n-Algebras admitting a multiplicative basis. J. Algebra Appl. 16(11), 11 (2018). 1850025 Calderón, A.J., Navarro, F.J., Sánchez, J.M.: Modules over linear spaces admitting a multiplicative basis. Linear Multilinear Algebra 65(1), 156–165 (2017) Calderón, A.J., Navarro, F.J.: Arbitrary algebras with a multiplicative basis. Linear Algebra Appl. 498(1), 106–116 (2016) Chu, Y.J., Huang, F., Zheng, Z.J.: A commutant of ß γ-system associated to the highest weight module v 4 of \(sl(2,\mathbb {C})\). J. Math. Phys. 51(9,092301), 32 (2010) De la Mora, C., Wojciechowski, P.J.: Multiplicative bases in matrix algebras. Linear Algebra Appl. 419(2-3), 287–298 (2006) Ding, L., Jia, X., Zhang W.: On infinite-dimensional 3-Lie algebras. J. Math. Phys. 55, 041704 (2014) Dimitrov, I., Futorny, V., Penkov, I.: A reduction theorem for highest weight modules over toroidal Lie algebras. Comm. Math. Phys. 250(1), 47–63 (2004) Dzhumadil’daev, A.S.: Representations of vector product n-Lie algebras. Comm. Algebra 32(9), 3315–3326 (2004) Filippov, V.T.: n-Lie algebras. Sib. Mat. Zh. 26(6), 126–140 (1985) Grantcharov, D., Jung, J.H., Kang, S.J., Kim, M.: Highest weight modules over quantum queer superalgebra u q(q(n)). Comm. Math. Phys. 296(3), 827–860 (2010) Iohara, K.: Unitarizable highest weight modules of the N = 2 super Virasoro algebras: untwisted sectors. Lett. Math. Phys. 91(3), 289–305 (2010) Kaygorodov, I., Popov, Y.: Generalized derivations of (color) n-ary algebras. Linear Multilinear Algebra 64(6), 1086–1106 (2016) Kupisch, H., Waschbusch, J.: On multiplicative basis in quasi-Frobenius algebras. Math. Z. 186, 401–405 (1984) Liu, D., Gao, S., Zhu, L.: Classification of irreducible weight modules over W-algebra W(2, 2). J. Math. Phys. 49(1), 6 (2008). 113503 Makhlouf, A.: Hom-alternative algebras and Hom-Jordan algebras. Int. Electron. J. Algebra 8, 177–190 (2010) Michor, P.W., Vinogradov, A.M.: Lie n-ary Associative algebras. Geometrical structures for physical theories, II (Vietri, 1996). Rend. Sem. Mat. Univ. Politec. Torino 54(4), 373-392 (1996) Pozhidaev, A.P.: Monomial n-Lie algebras. Algebra and Logic 37(5), 307–322 (1998) Pozhidaev, A.P.: Simple factor algebras and subalgebras of algebras of Jacobians. Siberian Math. J. 39(3), 512–517 (1998) Pozhidaev, A.P.: On simple n-Lie algebras. Algebra and Logic 38(3), 181–192 (1999) Pozhidaev, A.P.: Two classes of central simple n-Lie algebras. Siberian Math. J. 40(6), 1112–1118 (1999) Ren, B., Ji Meng, D.: Some two steps nilpotent Lie algebras I. Linear Algebra Appl. 338, 77–98 (2001) Roiter, A.V., Sergeichuk, V.V.: Existence of a multiplicative basis for finitely spaced module over an aggregate. Ukrainian Math. J. 46(5), 604–617 (1995) Sagle, A.A.: On simple extended Lie algebras over fields of characteristic zero. Pacific J. Math. 15(2), 621–648 (1965) Takemura, K.: The decomposition of level-1 irreducible highest-weight modules with respect to the level-0 actions of the quantum affine algebra. J. Phys. A 31 5, 1467–1485 (1998) Zapletal, A.: Difference equations and highest-weight modules of U q[sl(n)]. J. Phys A 31(47), 9593–9600 (1998)