Sagittal crest morphology decoupled from relative bite performance in Pleistocene tapirs (Perissodactyla: Tapiridae)

Integrative Zoology - Tập 18 Số 2 - Trang 254-277 - 2023
Lisa Van Linden1, Kim STOOPS1, Larissa Costa Coimbra Santos Dumbá2, Mário Alberto Cozzuol2, Jamie A. MacLaren3,1
1Functional Morphology Lab, Department of Biology, Campus Drie Eiken, Universiteit Antwerpen, Antwerpen, Belgium
2Departamento de Zoologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Minas Gerais Brazil
3Evolution and Diversity Dynamics Lab, Department of Geology Université de Liège, Quartier Agora Liège Belgium

Tóm tắt

AbstractBite force is often associated with specific morphological features, such as sagittal crests. The presence of a pronounced sagittal crest in some tapirs (Perissodactyla: Tapiridae) was recently shown to be negatively correlated with hard‐object feeding, in contrast with similar cranial structures in carnivorans. The aim of this study was to investigate bite forces and sagittal crest heights across a wide range of modern and extinct tapirs and apply a comparative investigation to establish whether these features are correlated across a broad phylogenetic scope. We examined a sample of 71 specimens representing 15 tapir species (5 extant, 10 extinct) using the dry‐skull method, linear measurements of cranial features, phylogenetic reconstruction, and comparative analyses. Tapirs were found to exhibit variation in bite force and sagittal crest height across their phylogeny and between different biogeographical realms, with high‐crested morphologies occurring mostly in Neotropical species. The highest bite forces within tapirs appear to be driven by estimates for the masseter–pterygoid muscle complex, rather than predicted forces for the temporalis muscle. Our results demonstrate that relative sagittal crest height is poorly correlated with relative cranial bite force, suggesting high force application is not a driver for pronounced sagittal crests in this sample. The divergent biomechanical capabilities of different contemporaneous tapirids may have allowed multiple species to occupy overlapping territories and partition resources to avoid excess competition. Bite forces in tapirs peak in Pleistocene species, independent of body size, suggesting possible dietary shifts as a potential result of climatic changes during this epoch.

Từ khóa


Tài liệu tham khảo

10.2307/2389080

10.1111/j.2041-210X.2012.00223.x

10.1098/rsif.2021.0324

10.1002/jez.1853

Behrensmeyer AK,, 2013, Taxonomic Occurrences of Tapiridae recorded in the Paleobiology Database

10.1080/02724634.2015.1014905

10.1111/j.1502-3931.2011.00265.x

BrünnichMT(1772). Zoologiæ fundamenta prælectionibus academicis accomodata: Grunde i Dyrelæren. pp. 1–253.

10.1098/rspb.2014.2114

Campbell KM,, 2017, Do differences in skull morphology and bite performance explain dietary specialization in sea otters?, Journal of Mammals, 98, 1408

10.1111/j.1744-7429.2011.00784.x

10.1111/j.1469-7998.2011.00886.x

10.1890/0012-9658(2007)88[347:BFAEAT]2.0.CO;2

Colbert MW, 2005, The facial skeleton of the early Oligocene Colodon (Perissodactyla, Tapiroidea), Palaeontologia Electronica, 8, 8

10.1671/0272-4634(2006)26[697:HMPANT]2.0.CO;2

10.1111/joa.12282

10.1644/12-MAMM-A-169.1

Currey JD, 2006, Bones: Structure and Mechanics

Czaplewski NJ, 2002, A Pleistocene tapir and associated mammals from the southwestern Ozark Highland, Journal of Cave and Karst Studies, 64, 97

10.1242/jeb.041129

10.1016/S0047-2484(82)80056-0

10.1111/j.1744-7429.2011.00761.x

10.1038/s41598-020-65586-w

Desmarest AG, 1819, Tapir l'inde, Tapirus indicus. Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, à l'agriculture, à l'économie rurale et domestique, à la médecine, 458

Soler BG, 2012, A new key locality for the Pliocene vertebrate record of Europe: The Camp dels Ninots maar (NE Spain), Geologica Acta, 10, 1

10.1017/S0030605300021384

10.1017/S0952836901000796

10.1007/s10914-018-9432-2

10.1111/j.1469-7580.2008.00911.x

10.1017/S0094837300006813

10.1007/s12549-018-0341-4

10.1671/0272-4634(2007)27[504:ANUPTF]2.0.CO;2

10.1111/evo.12059

10.1007/s10914-020-09524-7

10.56021/9780801893735

10.1111/j.1469-7998.2008.00459.x

10.1111/jzo.12349

10.1002/ar.24768

Gill TN, 1865, October 10th ‐ Dr. Bridges in the Chair, Proceedings of the Academy of Natural Sciences of Philadelphia, 17, 183

10.1007/BF00384318

Gorniak GC, 1985, Trends in the actions of mammalian masticatory muscles, Integrative and Comparative Biology, 25, 331

10.1016/j.quaint.2018.06.021

10.1093/bioinformatics/btm538

10.1002/ar.22518

10.1177/00220345670460054601

10.1111/j.1744-7429.2000.tb00480.x

10.1016/j.isci.2021.103182

10.1242/jeb.012211

10.1002/jmor.1051410405

10.1016/S1095-6433(01)00472-X

10.4072/rbp.2006.2.03

10.1007/s10914-012-9196-z

10.1644/10-MAMM-A-144.1

10.1098/rsfs.2021.0009

Hulbert RC, 2010, A new early Pleistocene tapir (Mammalia: Perissodactyla) from Florida, with a review of Blancan tapirs from the state, Bulletin of the Florida Museum of Natural History, 49, 67, 10.58782/flmnh.ezjr9001

Hulbert RC,, 2005, Phylogenetic analysis of Late Cenozoic Tapirus (Mammalia, Perissodactyla), Journal of Vertebrate Paleontology, 25, 72A

10.1666/08-062.1

Janzen DH, 1982, Seeds in tapir dung in Santa Rosa National Park, Costa Rica, Brenesia, 19, 129

Ji X‐P, 2015, Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China, Vertebrata Palasiatica, 53, 177

10.1007/BF00325880

10.1055/s-0039-1697833

10.1016/S0009-2541(98)00101-6

10.1130/G21476AR.1

10.1111/joor.12149

10.1002/jmor.21061

LegendreP(2018). Package ‘lmodel2’.https://cran.r‐project.org/web/packages/lmodel2/index.html

Leidy T, 1860, Post‐Pliocene Fossils of South Carolina, 99

10.1007/BF00344735

10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M

LinnaeusC(1758). Systema Naturae per regna tria naturae secundum classes ordines genera species cum characteribus differentiis synonymis locis. Editio decima reformata (ed. 10) 1 pp. 1–824.

10.1046/j.1365-2699.2002.00654.x

10.1080/02724634.1996.10011288

10.1093/zoolinnean/zly019

10.1002/jmor.20588

10.1002/jmor.20728

MaddisonWP MaddisonDR(2019). Mesquite: a modular system for evolutionary analysis. Version 3.61.http://www.mesquiteproject.org

10.1111/jeb.12937

Matthew WD,, 1923, New fossil mammals from the Pliocene of Sze‐Chuan, China, Bulletin of the American Museum of Natural History, 48, 563

10.1111/j.1749-4877.2012.00315.x

Murie J, 1871, The Malayan tapir, Journal of Anatomy Physiology, 6, 131

10.1002/ar.23306

10.1093/jmammal/gyab083

10.1111/j.1749-4877.2012.00316.x

Olsen SJ, 1960, Age and faunal relationships of Tapiravus remains from Florida, Journal of Paleontology, 34, 164

Orme D, 2013, CAPER: Canalyses of phylogenetics and evolution in R, Methods in Ecology and Evolution, 3, 145

10.2307/3504109

10.1644/863.1

10.1038/44766

10.1016/j.quaint.2010.12.035

10.1016/0012-821X(81)90197-7

Radinsky LB, 1965, Evolution of the tapiroid skeleton from Heptodon to Tapirus, Bulletin of the Museum of Comparative Zoology, 134, 69

Radinsky LB, 1966, A new genus of Early Eocene Tapiroid (Mammalia, Perissodactyla), Journal of Paleontology, 40, 740

10.1371/journal.pone.0072868

Core Team R, 2013, R: A Language and Environment for Statistical Computing

10.1111/j.2041-210X.2011.00169.x

10.1644/1545-1542(2002)083<0321:HBIAGT>2.0.CO;2

10.1590/1809-4392202101382

Roulin M, 1829, Rapport sur un Memoire de M.Roulin, ayant pour objet la decouverte d'une nouvelle espece de Tapir dans l'Amerique du Sud, fait a l'Academie royal des Sciences, Annales des Sciences Naturelles, 17, 107

10.1016/j.mambio.2015.11.001

10.5772/35361

10.3109/19401736.2015.1022766

10.1111/j.1420-9101.2009.01922.x

10.3732/ajb.93.10.1531

10.1111/j.1365-2435.2010.01703.x

Savage RJG, 1986, Mammal Evolution: An Illustrated Guide

10.1080/02724634.2011.550360

10.1038/nmeth.2019

Schoch RM, 1984, The type specimens of Tapiravus validus and Tapiravus rams (Mammalia, Perissodactyla), with a review of the genus, and a new report of Miotapirus (Miotapirus marslandensis Schoch and Prins, new species) from Nebraska, Postilla, 195, 1

Schultz CB, 1975, Middle and Late Cenozoic tapirs from Nebraska, Bulletin of the University of Nebraska State Museum, 10, 1

Sellards EH, 1918, The skull of a Pleistocene tapir including description of a new species and a note on the associated fauna and flora, Florida Geological Survey Annual Report, 10, 57

10.7717/peerj.514

10.1111/joa.12456

10.1086/285648

10.1111/j.1420-9101.2009.01845.x

10.1371/journal.pone.0118380

10.1111/j.1558-5646.1969.tb03552.x

10.1111/j.1095-8312.2008.01052.x

10.1017/S0952836905007430

10.1139/z91-327

10.1111/evo.13357

10.1371/journal.pone.0124020

10.2307/3038066

10.1093/icb/icm016

10.1016/j.jhevol.2014.05.007

10.1093/icb/45.2.256

Wortman JL, 1893, Ancestors of the tapir from the lower Miocene of Dakota, Bulletin of the American Museum of Natural History, 5, 159

10.1098/rsbl.2003.0095

10.1098/rspb.2004.2986