Some extremal properties of positive trigonometric polynomials

Pleiades Publishing Ltd - Tập 22 - Trang 696-698 - 1977
V. P. Kondrat'ev1
1Institute of Mathematics and Mechanics, Urals Scientific Center, Academy of Sciences of the USSR, USSR

Tóm tắt

For n=8 an upper bound is given for the functional $$V_n = \mathop {\inf }\limits_{t_n } \frac{{\alpha _1 + \alpha _2 + \cdots + \alpha _n }}{{\left( {\sqrt {\alpha _1 } - \sqrt {\alpha _0 } } \right)^2 }}$$ , which is defined on the class of even, nonnegative, trigonometric polynomials $$t_n (\phi ) = \sum\nolimits_{k = 0}^n {\alpha _k } cos k\phi $$ , such that α k ⩾ 0 (k=0, ...,n) α1>α0 :V s ⩽ 34.54461566.

Tài liệu tham khảo

Ch. J. de la Vallee Poussin, “Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs á une limite donnee,” Memoires Couronnés et Autres Mémoires Publiés par l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique,59, No. 1, 1–74 (1899). E. Landau, “Beitrage zur analytischen Zahlenthéorie,” Rendiconti del Circolo Mat. di Palermo,26, 169–302 (1908). E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig (1909). S. B. Stechkin, “On zeros of the Riemann zeta function,” Mat. Zametki,8, No. 4, 419–422 (1970). J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers,” Illinois J. Math.,6, 64–94 (1962). J. B. Rosser and L. Schoenfeld, “Sharper bounds for the Chebyshev functions θ(x) and ψ(x),” Math. Comp.,29, No. 129, 243–269 (1975). S. H. French, “Trigonometric polynomials in prime number theory,” Illinois J. Math.,10, 240–248 (1966). S. B. Stechkin, “On some extremal properties of positive trigonometric polynomials,” Mat. Zametki,7, No. 4, 411–422 (1970). L. Fejer, “über trigonometrische Polynome,” J. Reine Angew. Math.,146, 53–82 (1915).