Assessment of hydrochemical evolution of groundwater and its suitability for drinking and irrigation purposes in Al-Khazir Gomal Basin, Northern Iraq

Springer Science and Business Media LLC - Tập 74 - Trang 6647-6663 - 2015
Hussein Jassas1,2, Broder Merkel1
1Hydrogeological Institute, TU Bergakademie Freiberg, Freiberg, Germany
2Iraq Geological Survey, Baghdad, Iraq

Tóm tắt

This study evaluates the groundwater suitability for drinking and agricultural purposes and assesses the hydrochemical evolution in Al-Khazir Gomal Basin, north of Iraq. Sixty groundwater samples and 10 river water samples were collected in the dry season (October) and wet season (April). The samples were analyzed to determine major and some minor ions, trace elements, and physicochemical properties. All surface and groundwater samples are considered as fresh water (TDS < 794 mg/L) and slightly vary in chemical composition. The abundance of the major ions is as follows: Ca2+ > Mg2+ > Na+ > K+ = HCO3 − > SO4 2− > NO3 − > Cl−. Interpretation of analytical data showed predominance, the water type of Ca–HCO3 and Ca–Mg–HCO3 indicated young and renewable groundwater. Total dissolved solid, total hardness, major ions, and trace elements are all within permissible limits of the potable and domestic purposes according to the European and WHO standards. The parameters of irrigation suitability showed that all of the samples are fit for irrigation purpose. Moreover, cluster and factor analyses were applied to the large data set (70 samples and 25 variables) to unravel the hidden relationships between the parameters, and to reveal the main factors affecting the water quality. The samples collected from the same well during the wet and dry season were clustered together indicating that the seasonal variability is negligible. Factor analysis showed that the rainfall leaching processes (recharge), carbonate minerals dissolution, aluminosilicate weathering, and ionic exchange are the dominant factors involved in controlling the groundwater chemical composition.

Tài liệu tham khảo

Al-Basrawi NH (2006) Hydrogeological and hydrochemical study of Erbil Quadrangle (NJ–38–14), scale 1:250000. Int Rep No 3037, Baghdad Al-Jiburi HK (2007) Hydrogeological and hydrochemical study of Mosul Quadrangle (NJ–38–13), scale 1:250000. Int Rep No 3058, Baghdad Alloway B (2008) Zinc in soils and crop nutrition. ZA and IFA Brussels, Belgium and Paris Al-Sam S, Hanna F (1981) Evaluation of groundwater resources in Al-Khazir Gomal Basin. Int Rep No 1270, Iraq-Baghdad Al-Sam S, Hanna F, Saeed R (1978) Estimating groundwater reserves of Alkhazir-Gomal Basin. Int Rep No 887, Baghdad Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33(1):13–24. doi:10.1007/s002540050221 Ashley RP, Lloyd JW (1978) An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol 39(3–4):355–364. doi:10.1016/0022-1694(78)90011-2 Bahar MM, Reza MS (2010) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of Southwest Bangladesh. Environ Earth Sci 61(5):1065–1073. doi:10.1007/s12665-009-0427-4 Balasubramanian N, Sivasubramanian P, Soundranayagam J, Chandrasekar N, Gowtham B (2015) Groundwater classification and its suitability in Kadaladi, Ramanathapuram, India using GIS techniques. Environ Earth Sci 57:1–23. doi:10.1007/s12665-015-4394-7 Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: ain Azel plain (Algeria). Geoderma 159(3–4):390–398. doi:10.1016/j.geoderma.2010.08.016 Chen K, Jiao J, Huang J, Huang R (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China. Environ Pollut 147(3):771–780. doi:10.1016/j.envpol.2006.09.002 Cicchella D, Albanese S, De Vivo B, Dinelli E, Giaccio L, Lima A, Valera P (2010) Trace elements and ions in Italian bottled mineral waters: identification of anomalous values and human health related effects. J Geochem Explor 107(3):336–349. doi:10.1016/j.gexplo.2010.04.004 Cloutier V, Lefebvre R, Therrien R, Savard M (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3–4):294–313. doi:10.1016/j.jhydrol.2008.02.015 de Moel PJ, Helm AW, Rijn M, Dijk JC, Meer WG (2013) Assessment of calculation methods for calcium carbonate saturation in drinking water for DIN 38404-10 compliance, Drink. Water Eng. Sci. 6(2):115–124. doi:10.5194/dwes-6-115-2013 Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. Lewis Publishers, U.S CRC, Boca Raton Dinelli E, Lima A, De Vivo B, Albanese S, Cicchella D, Valera P (2010) Hydrogeochemical analysis on Italian bottled mineral waters: effects of geology. J Geochem Explor 107(3):317–335. doi:10.1016/j.gexplo.2010.06.004 European Communities (1998) Quality of water intended for human consumption regulations. S. I. No 81 of 1988 Farnham I, Stetzenbach K, Singh A, Johannesson K (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math Geol 32(8):943–968. doi:10.1023/A:1007522519268 Farnham I, Johannesson K, Singh A, Hodge V, Stetzenbach K (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490(1–2):123–138. doi:10.1016/S0003-2670(03)00350-7 Freeze R, Cherry J (1979) Groundwater. Prentice-Hall, New Jersey Gárfias J, Arroyo N, Aravena R (2010) Hydrochemistry and origins of mineralized waters in the Puebla aquifer system, Mexico. Environ Earth Sci 59(8):1789–1805. doi:10.1007/s12665-009-016-y Güler C, Thyne G, McCray J, Turner K (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474. doi:10.1007/s10040-002-0196-6 Handa BK (1964) Modified classification procedure for rating irrigation waters. Soil Sci 68(4):264–269. doi:10.1097/00010694-196410000-00008 Helena B, Pardo R, Vega M, Barrado E, Fernandez J (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816. doi:10.1016/S0043-1354(99)00225-0 Hem JD (1989) Study and interpritation of the chemical characteristics of natural water. In: United State Geological Survey Water-Supply Paper, 2254 3rd edn. Washington, DC: US Government Printing Office Hudson HE, Gilcreas FW (1976) Health and economic aspects of water hardness and corrosiveness. J Am Water Works Assoc 68(4):201–204 Jassas H, Merkel B (2014) Estimating groundwater recharge in the semiarid Al-Khazir Gomal Basin. North Iraq. Water 6(8):2467–2481. doi:10.3390/w6082467 Jassas H, Merkel B (2015) Investigating groundwater recharge by means of stable isotopes in the Al-Khazir Gomal Basin, northern Iraq. Environ Earth Sci 84:1–14. doi:10.1007/s12665-015-4013-7 Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253(1–4):194–210. doi:10.1016/S0022-1694(01)00481-4 Kaiser H (1958) The varimax criteria for analytical rotation in factor analysis. Psychometrika 23(3):187–200 Laaksoharju M, Skarman C, Skarman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14(7):861–871. doi:10.1016/S0883-2927(99)00024-4 Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, California Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313(1–3):77–89. doi:10.1016/S0048-9697(02)00683-6 Maran A, Stevanovic Z (2008) Iraqi Kurdistan environment: an invitation to discover. ITSC-IK Cons, Belgrade Matalas NC, Reiher BJ (1967) Some comments on the use of factor analyses. Water Resour Res 3(1):213–223. doi:10.1029/WR003i001p00213 Monjerezi M, Vogt RD, Aagaard P, Saka V (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26(8):1399–1413. doi:10.1016/j.apgeochem.2011.05.013 Oyarzún R, Jofré E, Morales P, Maturana H, Oyarzún J, Kretschmer N, Aravena R (2015) A hydrogeochemistry and isotopic approach for the assessment of surface water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile. Environ Earth Sci 73(1):39–55. doi:10.1007/s12665-014-3393-4 Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Report 99–4259, Denver, Colorado Piper A (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25(25):914–923 Ragunath H (1987) Ground water, 2nd edn. Wiley Eastern Ltd, New Delhi Rao YS, Reddy TV, Nayudu PT (1997) Groundwater quality in the Niva River basin, Chittoor district, Andhra Pradesh, India. Environ Geol 32(1):56–63. doi:10.1007/s002540050193 Richards L (1954) Diagnosis and improvement of saline and alkali soils. Agricultural Handbook 60. USDA and IBH Publishing Co. Ltd, New Delhi Sawyer G, McMcartly D (eds) (1967) Chemistry of sanitary engineers, 2nd edn. McGraw Hill, New York Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992. doi:10.1016/j.watres.2004.06.011 Singh A, Mondal GC, Singh TB, Singh S, Tewary BK, Sinha A (2012) Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environ Earth Sci 67(8):2175–2191. doi:10.1007/s12665-012-1658-3 Smil V (1999) Crop residues: agriculture’s largest harvest: crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 49(4):299–308. doi:10.2307/1313613 Stevanovic Z, Iurkiewicz A (2009) Groundwater management in northern Iraq. Hydrogeol J 17(2):367–378 Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ Geol 47(8):1099–1110. doi:10.1007/s00254-005-1243-0 Thorne DW, Peterson HB (1954) Irrigated soils. Constable and Company, London Tijani MN (1994) Hydrogeochemical assessment of groundwater in Moro area, Kwara state, Nigeria. Environ Geol 24(3):194–202 Todd D (1980) Groundwater hydrology. Wiley International Edition, Wiley Touhari F, Meddi M, Mehaiguene M, Razack M (2015) Hydrogeochemical assessment of the Upper Cheliff groundwater (North West Algeria). Environ Earth Sci 73(7):3043–3061. doi:10.1007/s12665-014-3598-6 UNEP (1992) World Atlas of Desertification. London, UK United Nations (2013) World population prospects: the 2012 revision. Highlights and Advance Tables Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592. doi:10.1016/S0043-1354(98)00138-9 WHO (2006) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva Williams RE (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water 20:466–478 Zacheus OM, Martikainen PJ (1997) Physicochemical quality of drinking and hot waters in Finnish buildings originated from groundwater or surface water plants. Sci Total Environ 204(1):1–10. doi:10.1016/S0048-9697(97)00160-5