Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters

Endocrine - Tập 65 Số 1 - Trang 61-72 - 2019
Lu Wang1, Chenyang Wang1, Ruihu Zhang1, Yu Liu2, Chunfang Wang3, Guohua Song1, Jingjing Yu1, Zhaoyang Chen3
1Laboratory Animal Center of Shanxi Medical University, Shanxi Province, China
2Department of Pharmacology, Shanxi Medical University, Shanxi Province, China
3Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Shanxi Province, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

S.Y. Lu, S.D. Qi, Y. Zhao, Y.Y. Li, F.M. Yang, W.H. Yu, M. Jin, L.X. Chen, J.B. Wang, Z.L. He, H.J. Li, Type 2 diabetes mellitus non-genetic Rhesus monkey model induced by high fat and high sucrose diet. Exp. Clin. Endocrinol. Diabetes. 123(1), 19–26 (2015). https://doi.org/10.1055/s-0034-1385923

B.K. Podell, D.F. Ackart, M.A. Richardson, J.E. DiLisio, B. Pulford, R.J. Basaraba, A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. Dis. Models Mech. 10(2), 151–162 (2017). https://doi.org/10.1242/dmm.025593

N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

X. Li, J. Lu, Y. Wang, X. Huo, Z. Li, S. Zhang, C. Li, M. Guo, X. Du, Z. Chen, Establishment and characterization of a newly established diabetic gerbil line. PLoS ONE 11(7), e0159420 (2016). https://doi.org/10.1371/journal.pone.0159420

N. Lawlor, J. George, M. Bolisetty, R. Kursawe, L. Sun, Single cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 27(2), 208 (2017)

C. Sandor, N.L. Beer, C. Webber, Diverse type 2 diabetes genetic risk factors functionally converge in a phenotype-focused gene network. PLoS Comput. Biol. 13(10), e1005816 (2017). https://doi.org/10.1371/journal.pcbi.1005816

S. De Rosa, B. Arcidiacono, E. Chiefari, A. Brunetti, C. Indolfi, D.P. Foti, Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. 9, 2 (2018). https://doi.org/10.3389/fendo.2018.00002

S. O’Rahilly, I. Barroso, N.J. Wareham, Genetic factors in type 2 diabetes: the end of the beginning? Science 307(5708), 370–373 (2005)

W.T. Cefalu, Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. Ilar J. 47(3), 186–198 (2006)

M.S. Islam, R.D. Wilson, Experimentally induced rodent models of type 2 diabetes. Methods Mol. Biol. 933, 161 (2012)

A. Nishigaki, H. Noma, T. Kakizawa, The relations between doses of streptozotocin and pathosis in induced diabetes mellitus. Shikwa Gakuho 89(3), 639–662 (1989)

D.A. Rees, J.C. Alcolado, Animal models of diabetes mellitus. Diabet. Med. 22(4), 359–370 (2010)

H. Ueda, H. Ikegami, E. Yamato, J. Fu, M. Fukuda, G. Shen, The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 38(5), 503–508 (1995)

W. Suzuki, S. Iizuka, M. Tabuchi, S. Funo, T. Yanagisawa, M. Kimura, A new mouse model of spontaneous diabetes derived from ddY strain. Exp. Anim. 48(3), 181–189 (1999)

J.H. Kim, A.M. Saxton, The TALLYHO mouse as a model of human type 2 diabetes. Methods Mol. Biol. (Clifton, N. J.) 933, 75–87 (2012). https://doi.org/10.1007/978-1-62703-068-7_6

L. Boquist, Obesity and pancreatic islet hyperplasia in the Mongolian gerbil. Diabetologia 8(4), 274–282 (1972)

K. Kimura, T. Toyota, M. Kakizaki, M. Kudo, K. Takebe, Y. Goto, Impaired insulin secretion in the spontaneous diabetes rats. Tohoku J. Exp. Med. 137(4), 453–459 (1982)

S.E. Kahn, R.L. Hull, K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121), 840–846 (2006). https://doi.org/10.1038/nature05482

R. Raj, J.S. Bhatti, S.K. Bhadada, P.W. Ramteke, Association of polymorphisms of peroxisome proliferator activated receptors in early and late onset of type 2 diabetes mellitus. Diabetes Metab. Syndr. 11(Suppl 1), S287–s293 (2017). https://doi.org/10.1016/j.dsx.2017.03.004

T.J. Hsiao, E. Lin, The Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma (PPARG) gene in relation to obesity and metabolic phenotypes in a Taiwanese population. Endocrine 48(3), 786–793 (2015). https://doi.org/10.1007/s12020-014-0407-7

X. Lv, L. Zhang, J. Sun, Z. Cai, Q. Gu, R. Zhang, A. Shan, Interaction between peroxisome proliferator-activated receptor gamma polymorphism and obesity on type 2 diabetes in a Chinese Han population. Diabetol. Metab. Syndr. 9, 7 (2017). https://doi.org/10.1186/s13098-017-0205-5

M. Mueckler, Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes 39(1), 6–11 (1990)

X. Zhou, P. Shentu, Y. Xu, Spatiotemporal regulators for insulin-stimulated GLUT4 vesicle exocytosis. J. Diabetes Res. 2017, 1683678 (2017). https://doi.org/10.1155/2017/1683678

M. Beg, N. Abdullah, F.S. Thowfeik, N.K. Altorki, T.E. Mcgraw, Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. eLife 6(2017-05-22), (2017)

W. Andreas, C.B. Wollheim, Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147(6), 2643–2649 (2006)

H. Meier, G.A. Yerganian, Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). 1. Pathological findings. Proc. Soc. Exp. Biol. Med 100(4), 810–815 (1959)

H. Meier, G. Yerganian, Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II. Findings in the offspring of diabetic parents. Diabetes 10(1), 12 (1961)

H. Meier, G. Yerganian, Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III. Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10, 19–21 (1961)

S. Andrikopoulos, A.R. Blair, N. Deluca, B.C. Fam, J. Proietto, Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab. 295(6), E1323 (2008). https://doi.org/10.1152/ajpendo.90617.2008

J.H. Kim, T.P. Stewart, M. Soltani-Bejnood, L. Wang, J.M. Fortuna, O.A. Mostafa, N. Moustaid-Moussa, A.M. Shoieb, M.F. McEntee, Y. Wang, L. Bechtel, J.K. Naggert, Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J. Endocrinol. 191(2), 437–446 (2006). https://doi.org/10.1677/joe.1.06647

G. Mingrone, F.L. Henriksen, A.V. Greco, L.N. Krogh, E. Capristo, A. Gastaldelli, M. Castagneto, E. Ferrannini, G. Gasbarrini, H. Beck-Nielsen, Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency. Diabetes 48(6), 1258–1263 (1999). https://doi.org/10.2337/diabetes.48.6.1258

M. Roden, T.B. Price, G. Perseghin, K.F. Petersen, D.L. Rothman, G.W. Cline, G.I. Shulman, Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Investig. 97(12), 2859–2865 (1996). https://doi.org/10.1172/jci118742

Z. Abdeen, C. Jildeh, S. Dkeideek, R. Qasrawi, I. Ghannam, H. Al Sabbah, Overweight and obesity among Palestinian adults: analyses of the anthropometric data from the First National Health and Nutrition Survey (1999-2000). J. Obes. 2012, 213547 (2012). https://doi.org/10.1155/2012/213547

M.M. Lima-Martinez, M. Paoli, M. Rodney, N. Balladares, M. Contreras, L. D'Marco, G. Iacobellis, Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine 51(3), 448–455 (2016). https://doi.org/10.1007/s12020-015-0710-y

Y. Goto, M. Kakizaki, N. Masaki, Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J. Exp. Med. 119(1), 85–90 (1976)

G. Miao, T. Ito, F. Uchikoshi, M. Tanemura, K. Kawamoto, K. Shimada, M. Nozawa, H. Matsuda, Development of islet-like cell clusters after pancreas transplantation in the spontaneously diabetic Torri rat. Am. J. Transplant. 5(10), 2360–2367 (2005). https://doi.org/10.1111/j.1600-6143.2005.01023.x

A. Charollais, A. Gjinovci, J. Huarte, J. Bauquis, A. Nadal, F. MartãN, Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. J. Clin. Investig. 106(2), 235–243 (2000)

A.K. Turpeinen, T.O. Takala, P. Nuutila, T. Axelin, M. Luotolahti, M. Haaparanta, J. Bergman, H. Hamalainen, H. Iida, M. Maki, M.I. Uusitupa, J. Knuuti, Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Diabetes 48(6), 1245–1250 (1999). https://doi.org/10.2337/diabetes.48.6.1245

E.S. Jin, M. Szuszkiewicz-Garcia, J.D. Browning, J.D. Baxter, N. Abate, C.R. Malloy, Influence of liver triglycerides on suppression of glucose production by insulin in men. J. Clin. Endocrinol. Metab. 100(1), 235–243 (2015). https://doi.org/10.1210/jc.2014-2404

A.H. Bakker, J. Nijhuis, W.A. Buurman, F.M. van Dielen, J.W. Greve, Low number of omental preadipocytes with high leptin and low adiponectin secretion is associated with high fasting plasma glucose levels in obese subjects. Diabetes Obes. Metab. 8(5), 585–588 (2006). https://doi.org/10.1111/j.1463-1326.2006.00558.x

G. Paltoglou, M. Schoina, G. Valsamakis, N. Salakos, A. Avloniti, A. Chatzinikolaou, A. Margeli, C. Skevaki, M. Papagianni, C. Kanaka-Gantenbein, I. Papassotiriou, G.P. Chrousos, I.G. Fatouros, G. Mastorakos, Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55(3), 925–933 (2017). https://doi.org/10.1007/s12020-017-1227-3

Y. Minokoshi, Y.B. Kim, O.D. Peroni, L.G. Fryer, C. Mã¼Ller, D. Carling, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415(6869), 339–343 (2002)

T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8(11), 1288–1295 (2002). https://doi.org/10.1038/nm788

S. Yu, K. Matsusue, P. Kashireddy, W.Q. Cao, V. Yeldandi, A.V. Yeldandi, Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptorgamma1 (PPARgamma1) overexpression. J. Biol. Chem. 278(1), 498–505 (2003)

T. Miura, W. Suzuki, E. Ishihara, I. Arai, H. Ishida, Y. Seino, Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse: a new genetic animal model of type 2 diabetes. Eur. J. Endocrinol. 145(6), 785 (2001)