Comparative pharmacological evaluation of the cathinone derivatives, mephedrone and methedrone, in mice

NeuroToxicology - Tập 50 - Trang 71-80 - 2015
Priscilla B. Pail1, Kesiane M. Costa2, Carlos E. Leite3, Maria M. Campos2,3,4
1PUCRS, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
2PUCRS, Programa de Pós-graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil
3PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre, RS, Brazil
4PUCRS, Faculdade de Odontologia, Porto Alegre, RS, Brazil

Tài liệu tham khảo

Angoa-Pérez, 2012, Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum, J. Neurochem., 120, 1097 Bannister, 2009, Preclinical and early clinical investigations related to monoaminergic pain modulation, Neurotherapeutics, 6, 703, 10.1016/j.nurt.2009.07.009 Baumann, 2012, The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue, Neuropsychopharmacology, 37, 1192, 10.1038/npp.2011.304 Biala, 2009, Effects of co-administration of bupropion and nicotine or d-amphetamine on the elevated plus maze test in mice, J. Pharm. Pharmacol., 61, 493, 10.1211/jpp.61.04.0012 Bonano, 2014, Abuse-related and abuse-limiting effects of methcathinone and the synthetic “bath salts” cathinone analogs methylenedioxypyrovalerone (MDPV), methylone and mephedrone on intracranial self-stimulation in rats, Psychopharmacology (Berl.), 231, 199, 10.1007/s00213-013-3223-5 Bonano, 2015, Quantitative structure–activity relationship analysis of the pharmacology of para-substituted methcathinone analogues, Br. J. Pharmacol., 172, 2433, 10.1111/bph.13030 Budzynska, 2015, Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models, Neurochem. Res., 40, 1083, 10.1007/s11064-015-1566-5 Cameron, 2013, Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter, Br. J. Pharmacol., 168, 1750, 10.1111/bph.12061 Cancela, 2001, A dopaminergic mechanism is involved in the ‘anxiogenic-like’ response induced by chronic amphetamine treatment: a behavioral and neurochemical study, Brain Res., 909, 179, 10.1016/S0006-8993(01)02680-4 Connor, 2000, Comparison of analgesic effects of khat (Catha edulis Forsk) extract, d-amphetamine and ibuprofen in mice, J. Pharm. Pharmacol., 52, 107, 10.1211/0022357001773580 Cryan, 2005, The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice, Neurosci. Biobehav. Rev., 29, 571, 10.1016/j.neubiorev.2005.03.009 den Hollander, 2013, Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone, Pharmacol. Biochem. Behav., 103, 501, 10.1016/j.pbb.2012.10.006 Eshleman, 2013, Substituted methcathinones differ in transporter and receptor interactions, Biochem. Pharmacol., 85, 1803, 10.1016/j.bcp.2013.04.004 Ferguson, 1969, Studies of tolerance development to morphine analgesia in rats tested on the hot plate, Eur. J. Pharmacol., 8, 83, 10.1016/0014-2999(69)90132-0 German, 2014, Bath salts and synthetic cathinones: an emerging designer drug phenomenon, Life Sci., 97, 2, 10.1016/j.lfs.2013.07.023 González, 2011, Development and validation of an ultra-high performance liquid chromatography–tandem mass-spectrometry (UHPLC–MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples, J. Neurosci. Methods, 198, 187, 10.1016/j.jneumeth.2011.03.023 Green, 2014, The preclinical pharmacology of mephedrone; not just MDMA by another name, Br. J. Pharmacol., 171, 2251, 10.1111/bph.12628 Gregg, 2014, Behavioral pharmacology of designer cathinones: a review of the preclinical literature, Life Sci., 97, 27, 10.1016/j.lfs.2013.10.033 Gregg, 2015, Stereochemistry of mephedrone neuropharmacology: enantiomer-specific behavioural and neurochemical effects in rats, Br. J. Pharmacol., 172, 883, 10.1111/bph.12951 Haberzettl, 2014, Role of 5-HT(1A)- and 5-HT(2A) receptors for the murine model of the serotonin syndrome, J. Pharmacol. Toxicol. Methods, 70, 129, 10.1016/j.vascn.2014.07.003 Holland, 1968, A note on a new technique of recording ambulation in the open field test and its validation, Acta Psychol. (Amst.), 28, 293, 10.1016/0001-6918(68)90020-6 Hows, 2004, High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples, J. Neurosci. Methods, 138, 123, 10.1016/j.jneumeth.2004.03.021 Karim, 2012, 2′-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA(A) receptors, Br. J. Pharmacol., 165, 880, 10.1111/j.1476-5381.2011.01604.x Kehr, 2011, Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats, Br. J. Pharmacol., 164, 1949, 10.1111/j.1476-5381.2011.01499.x Lisek, 2012, Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation, Drug Alcohol Depend., 126, 257, 10.1016/j.drugalcdep.2012.04.021 Lockridge, 2013, Head movement: a novel serotonin-sensitive behavioral endpoint for tail suspension test analysis, Behav. Brain Res., 246, 168, 10.1016/j.bbr.2013.02.032 López-Arnau, 2012, Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone, Br. J. Pharmacol., 167, 407, 10.1111/j.1476-5381.2012.01998.x López-Arnau, 2015, Neuronal changes and oxidative stress in adolescent rats after repeated exposure to mephedrone, Toxicol. Appl. Pharmacol., 286, 27, 10.1016/j.taap.2015.03.015 Luciano, 2014, Nephrotoxic effects of designer drugs: synthetic is not better!, Nat. Rev. Nephrol., 10, 314, 10.1038/nrneph.2014.44 Marusich, 2012, Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice, Neurotoxicology, 33, 1305, 10.1016/j.neuro.2012.08.003 Miotto, 2013, Clinical and pharmacological aspects of bath salt use: a review of the literature and case reports, Drug Alcohol Depend., 132, 1, 10.1016/j.drugalcdep.2013.06.016 Naderi, 2014, Acute systemic infusion of bupropion decrease formalin induced pain behavior in rat, Korean J. Pain, 27, 118, 10.3344/kjp.2014.27.2.118 Paillet-Loilier, 2014, Emerging drugs of abuse: current perspectives on substituted cathinones, Subst. Abuse Rehabil., 5, 37 Sakloth, 2015, Steric parameters, molecular modeling and hydropathic interaction analysis of the pharmacology of para-substituted methcathinone analogues, Br. J. Pharmacol., 172, 2210, 10.1111/bph.13043 Simmler, 2013, Pharmacological characterization of designer cathinones in vitro, Br. J. Pharmacol., 168, 458, 10.1111/j.1476-5381.2012.02145.x Simmler, 2014, Monoamine transporter and receptor interaction profiles of a new series of designer cathinones, Neuropharmacology, 79, 152, 10.1016/j.neuropharm.2013.11.008 Steru, 1985, The tail suspension test: a new method for screening antidepressants in mice, Psychopharmacology (Berl.), 85, 367, 10.1007/BF00428203 Valente, 2014, Khat and synthetic cathinones: a review, Arch. Toxicol., 88, 15, 10.1007/s00204-013-1163-9 Velázquez-Sánchez, 2010, The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization, Eur. Neuropsychopharmacol., 20, 501, 10.1016/j.euroneuro.2010.03.005 Wikström, 2010, Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone), J. Anal. Toxicol., 34, 594, 10.1093/jat/34.9.594 Woo, 2013, “How high do they look?”: identification and treatment of common ingestions in adolescents, J. Pediatr. Health Care, 27, 135, 10.1016/j.pedhc.2012.12.002 Wright, 2012, Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats, PLoS ONE, 7, e44652, 10.1371/journal.pone.0044652