Performance of integrated optical switches based on 2D materials and beyond
Tóm tắt
Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.
Tài liệu tham khảo
Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354
Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043
Geis M W, Spector S J, Williamson R C, Lyszczarz T M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514–2516
Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A, St-Gelais R, Lipson M. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120
Li X, Xu H, Xiao X, Li Z, Yu Y, Yu J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753
Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156
Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436
Manipatruni S, Dokania R K, Schmidt B, Sherwood-Droz N, Poitras C B, Apsel A B, Lipson M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187
Timurdogan E, Sorace-Agaskar C M, Sun J, Shah Hosseini E, Biberman A, Watts M R. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008
Ferrari A C, Bonaccorso F, Fal’ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hong B H, Ahn J H, Kim J M, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R, Tannock Q, Löiwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810
Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219
Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233
Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5): 297–301
Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252
Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D N, Hone J, Lipson M. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262
Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72
Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737
Yao Y, Xia X, Cheng Z, Wei K, Jiang X, Dong J, Zhang H. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:https://doi.org/10.1109/JSTQE.2020.2982985
Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355
Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20–30
Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656–660
Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30 (24): 1705963
Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, Wang Z, Ning C Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992
Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105 (13): 136805
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229
Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X, Zhao J. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9 (1): 63
Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6 (8): 554–559
Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2020-0093
Miller D. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185
Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307
Jia H, Xia Y, Zhang L, Ding J, Fu X, Yang L. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241
Lee B G, Dupuis N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20
Jia H, Zhou T, Zhao Y, Xia Y, Dai J, Zhang L, Ding J, Fu X, Yang L. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835
Zheng D, Doménech J D, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629
Li Z, Zhou L, Lu L, Zhao S, Li D, Chen J. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21
Seok T J, Quack N, Han S, Muller R S, Wu M C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64
Han S, Seok T J, Quack N, Yoo B W, Wu M C. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370
Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature, 2013, 493(7431): 195–199
Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180
Xiong Y, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098
Jia H, Zhou T, Zhang L, Ding J, Fu X, Yang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707
Zhou T, Jia H, Ding J, Zhang L, Fu X, Yang L. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384
Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P C, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C. Femtojoule electrooptic modulation using a silicon-organic hybrid device. Light, Science & Applications, 2015, 4(2): e255
Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483
Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252
Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43
Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
Klein M, Badada B H, Binder R, Alfrey A, McKie M, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J, Schaibley J R. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264
Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468
Chen B, Wu H, Xin C, Dai D, Tong L. Flexible integration of freestanding nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20
Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346
Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411
Song Q Q, Chen K X, Hu Z F. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364
Liu Y, Wang H, Wang S, Wang Y, Wang Y, Guo Z, Xiao S, Yao Y, Song Q, Zhang H, Xu K. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526
Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2019-0510
Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159
Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104
Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046
Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, Lin S, Li X, Zhao J, Chen H, Bao Q. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249–20255
Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, Gao W, Su Y. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486
Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528
Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:https://doi.org/10.1515/nanoph-2019-0381
Gan X, Shiue R J, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D Jr, Hone J, Heinz T F, Englund D. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696
Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316
Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514
Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q. Efficient modulation of 1.55 µm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005
Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene-silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44
Dalir H, Xia Y, Wang Y, Zhang X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568
Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon-organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173
Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67
Miller D A B. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308
Qiao L, Tang W, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306
Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526
Yan S, Zhu X, Dong J, Ding Y, Xiao S. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2020-0074
Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenkøwe L K, Jin K J, Mortensen N A, Xiao S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9 (40): 15576–15581
Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161
Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenkøwe L K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325
Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846
Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283
Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424
Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518
Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360
Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842
Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323–333
Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, Kim J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18 (6): 550–560
Stanford M G, Rack P D, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20
Sorger V J, Amin R, Khurgin J B, Ma Z, Dalir H, Khan S. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20 (1): 014012