Sharp Moser–Trudinger inequalities on Riemannian manifolds with negative curvature

Springer Science and Business Media LLC - Tập 195 - Trang 459-471 - 2015
Qiaohua Yang1, Dan Su2, Yinying Kong3
1School of Mathematics and Statistics, Wuhan University, Wuhan, People’s Republic of China
2School of Statistics, University of International Business and Economics, Beijing, People’s Republic of China
3School of Mathematics and Statistics, Guangdong University of Business Studies, Guangzhou, People’s Republic of China

Tóm tắt

Let $$M$$ be a complete, simply connected Riemannian manifold with negative curvature. We obtain some Moser–Trudinger inequalities with sharp constants on $$M$$ .

Tài liệu tham khảo

Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988) Adimurthi, Tintarev, K.: On a version of Trudinger–Moser inequality with Möbius shift invariance. Calc. Var. Partial Differ. Equ. 39, 203–212 (2010) Aubin, T.: Sur la function exponentielle. C. R. Acad. Sci. Paris Ser. A 270, 1514 (1970) Cherrier, P.: Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 103, 353–374 (1979) Cherrier, P.: Cas déxception du théorème d’inclusion de Sobolev sur les variétés Riemanniennes et applications. Bull. Sci. Math. 105, 235–288 (1981) Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993) Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Berlin (2004) Lam, N., Lu, G.: Sharp Moser–Trudinger inequality in the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012) Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013) Li, P.: Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, vol. 6. Seoul National University, Seoul (1993) Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{n}\). Indiana Univ. Math. J. 57(1), 451–480 (2008) Mancini, G., Sandeep, K.: Moser–Trudinger inequality on conformal discs. Commun. Contemp. Math. 12(6), 1055–1068 (2010) Mancini, G., Sandeep, K., Tintarev, K.: Trudinger–moser inequality in the hyperbolic space \({\mathbb{H}}^{N}\). Adv. Nonlinear Anal. 2(3), 309–324 (2013) Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970–1971) O’Neil, R.: Convolution operateors and \(L(p, q)\) spaces. Duke Math. J. 30, 129–142 (1963) Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{2}\). J. Funct. Anal. 219(2), 340–367 (2005) Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, vol. 1. International Press, Boston (1994) Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967) Yang, Y.: Trudinger–Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894–1938 (2012)