Sharp Moser–Trudinger inequalities on Riemannian manifolds with negative curvature
Tóm tắt
Let
$$M$$
be a complete, simply connected Riemannian manifold with negative curvature. We obtain some Moser–Trudinger inequalities with sharp constants on
$$M$$
.
Tài liệu tham khảo
Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)
Adimurthi, Tintarev, K.: On a version of Trudinger–Moser inequality with Möbius shift invariance. Calc. Var. Partial Differ. Equ. 39, 203–212 (2010)
Aubin, T.: Sur la function exponentielle. C. R. Acad. Sci. Paris Ser. A 270, 1514 (1970)
Cherrier, P.: Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 103, 353–374 (1979)
Cherrier, P.: Cas déxception du théorème d’inclusion de Sobolev sur les variétés Riemanniennes et applications. Bull. Sci. Math. 105, 235–288 (1981)
Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. 68, 415–454 (1993)
Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Berlin (2004)
Lam, N., Lu, G.: Sharp Moser–Trudinger inequality in the Heisenberg group at the critical case and applications. Adv. Math. 231(6), 3259–3287 (2012)
Lam, N., Lu, G.: A new approach to sharp Moser–Trudinger and Adams type inequalities: a rearrangement-free argument. J. Differ. Equ. 255, 298–325 (2013)
Li, P.: Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, vol. 6. Seoul National University, Seoul (1993)
Li, Y.X., Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{n}\). Indiana Univ. Math. J. 57(1), 451–480 (2008)
Mancini, G., Sandeep, K.: Moser–Trudinger inequality on conformal discs. Commun. Contemp. Math. 12(6), 1055–1068 (2010)
Mancini, G., Sandeep, K., Tintarev, K.: Trudinger–moser inequality in the hyperbolic space \({\mathbb{H}}^{N}\). Adv. Nonlinear Anal. 2(3), 309–324 (2013)
Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970–1971)
O’Neil, R.: Convolution operateors and \(L(p, q)\) spaces. Duke Math. J. 30, 129–142 (1963)
Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in \({\mathbb{R}}^{2}\). J. Funct. Anal. 219(2), 340–367 (2005)
Schoen, R., Yau, S.-T.: Lectures on Differential Geometry, vol. 1. International Press, Boston (1994)
Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)
Yang, Y.: Trudinger–Moser inequalities on complete noncompact Riemannian manifolds. J. Funct. Anal. 263, 1894–1938 (2012)