The relative importance of different ciliate taxa in the pelagic food web of lake constance
Tóm tắt
Abundance, biovolume, and species composition of pelagic ciliates in Lake Constance were recorded over two annual cycles (1987/88). Production was estimated from mean annual biovolumes and size-specific growth rates obtained from the literature. Cell concentrations and biovolumes ranged from 0.1 to 120 cells ml−1 and from 3 to 1,200 mm3 m−3, respectively. Mean annual values were, respectively, 6.8 cells ml−1 and 94 mm3 m−3 in 1987, and 12.0 cells ml−1 and 130 mm3 m−3 in 1988. In both years, prostome nanociliates (<20μm) dominated numerically, while strobiliids in the size range 20–35μm contributed most significantly to ciliate production. Ciliate community production, according to a crude calculation, yielded approximately 10–15 g C m−2 year−1.
Tài liệu tham khảo
Albright LJ, Sherr EB, Sherr BF, Fallon RD (1987) Grazing of ciliated protozoa on free and particle-attached bacteria. Mar Ecol Prog Ser 38:125–129
Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol Oceanogr 27:1059–1071
Beaver JR, Crisman TL (1982) The trophic response of ciliated protozoa in freshwater lakes. Limnol Oceanogr 27:246–253
Beaver JR, Crisman TL (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microb Ecol 17:111–136
Bick H (1972) Ciliata. In: Elster HJ, Ohle W (eds) Das Zooplankton der Binnen-gewässer, vol 26. E. Schweizerbart' sche Verlagsbuchhandlung, Stuttgart, pp. 31–83
Carlough LA, Meyer JL (1989) Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Limnol Oceanogr 34:163–177
Corliss JO (1979) The ciliated protozoa: Characterization, classification and guide to the literature, 2nd ed. Pergamon Press, London
Curds CR (1982) British and other freshwater ciliated protozoa. I. Ciliophora: Kinetofragminophora. Keys and notes for the identification of the free-living genera. Synopsis of the British Fauna No. 22, Cambridge University Press, Cambridge
Curds CR, Gates MA, Roberts DM (1983) British and other freshwater ciliated protozoa. II. Ciliophora: Oligohymenophora and Polyhymenophora. Keys and notes for the identification of the free-living genera. Synopsis of the British Fauna No. 23, Cambridge University Press, Cambridge
Dragesco J (1968) Les genresPleuronema Dujardin,Schizocalyptra nov. gen. etHistiobalantium Stokes (Ciliés holotriches hyménostomes). Protistologica 4:85–107
Fenchel T (1968) The ecology of marine microbenthos. III. The reproductive potential of ciliates. Ophelia 5:123–136
Fenchel T (1980) Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microb Ecol 6:13–25
Fenchel T (1987) Ecology of protozoa: The biology of free-living phagotrophic protists. Science Technical Publishers, Madison, Wisconsin
Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. Microb Ecol 9:99–122
Finlay BJ (1977) The dependence of reproductive rate on cell size and temperature in freshwater ciliated protozoa. Oecologia 30:75–81
Finlay BJ (1978) Community production and respiration by ciliated protozoa in the benthos of a small eutrophic loch. Freshwater Biology 8:327–341
Foissner W, Wilbert N (1979) Morphologie, Infraciliatur und Ökologie der limnischen Tintinnina:Tintinnidium fluviatile Stein,Tintinnidium pusillum Entz,Tintinnopsis cylindrata Daday undCodonella cratera Leidy (Ciliophora, Polyhymenophora). J Protozool 26:90–103
Foissner W (1982) Ecology and taxonomy of the Hypotrichida (Protozoa, Ciliophora) of some Austrian soils. Arch Prot 126:19–143
Foissner W, Oleksiv I, Müller H (1989) Morphology and infraciliature of some ciliates (Protozoa: Ciliophora) from stagnant waters. Arch Protistenkunde (in press)
Gates MA (1984) Contribution of ciliated protozoa to the planktonic biomass of lake ecosystems. Hydrobiologia 108:233–238
Geller W (1985) Production, food utilization and losses of two coexisting, ecologically differentDaphnia species. Arch Hydrobiol Beih 21:67–79
Geller W (1989) The energy budget of two sympatricDaphnia species in Lake Constance: Productivity and energy residence times. Oecologia 78:242–250
Gifford DJ (1985) Laboratory culture of marine planktonic oligotrichs (Ciliophora, Oligotrichida). Mar Ecol Prog Ser 23:257–267
Heinbokel JF (1978) Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Marine Biology 47:177–189
Kahl A (1930–1935) Urtiere oder Protozoa. I. Wimpertiere oder Ciliata. In: Dahl F (ed) Die Tierwelt Deutschlands. G Fischer Jena, pp. 1–886
Montagnes DJS, Lynn DH, Roff JC, Taylor WD (1988) The annual cycle of heterotrophic planktonic ciliates in the waters surrounding the Isles of Shoals, Gulf of Maine: An assessment of their trophic role. Marine Biology 99:21–30
Montagnes DJS, Lynn DH (1989) The annual cycle ofMesodinium rubrum in the waters surrounding the Isles of Shoals, Gulf of Maine. J Plankton Res 11:193–201
Müller H (1987) Enumeration and identification of pelagic freshwater ciliates: A comparison of methods. EOS 68:1783
Müller H, Geller W, Schöne A (1989) Pelagic ciliates in Lake Constance: Comparison of epilimnion and hypolimnion. Verhandlungen Internat. Verein. Limnol. (in press)
Pace ML (1982) Planktonic ciliates: Their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can J Fish Aquat Sci 39:1106–1116
Pace ML (1985) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55
Porter KG, Sherr EB, Sherr BF, Pace ML, Sanders RW (1985) Protozoa in planktonic food webs. J Protozool 32:409–415
Rassoulzadegan F, Laval-Peuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159:75–88
Rivier A, Brownlee RW, Sheldon RW, Rassoulzadegan F (1985) Growth of microzooplankton: A comparative study of bacterivorous zooflagellates and ciliates. Mar Microb Food Webs 1:51–60
Sanders RW, Porter KG, Bennett SJ, DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater plankton community. Limnol Oceanogr 34:673–687
Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31:177–183
Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711
Simon M, Tilzer MM (1987) Bacterial response to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J Plankton Res 9:535–552
Smetacek V (1984) Growth dynamics of a common Baltic protozooplankter: The ciliate genusLohmaniella. Limnologica 15:371–376
Skogstad A, Granskog L, Klaveness D (1987) Growth of freshwater ciliates offered planktonic algae as food. J Plankton Res 9:503–512
Sommer U (1985) Seasonal succession of phytoplankton in Lake Constance. BioScience 35:351–357
Stoecker DK, Davis LH, Provan A (1983) Growth ofFavella sp. (Ciliata: Tintinnina) and other microzooplankters in cages incubated in situ and comparison to growth in vitro. Mar Biol 75:293–302
Stoecker DK, Evans GT (1985) Effects of protozoan herbivory and carnivory in a microplankton food web. Mar Ecol Prog Ser 25:159–167
Stoecker DK, Cucci TL, Hulburth EM, Yentsch CM (1986) Selective feeding byBalanion sp. Ciliata Balanoidae on phytoplankton that best supports its growth. J Exp Mar Biol Ecol 95:113–130
Taylor WD (1978) Growth responses of ciliate protozoa to the abundance of their bacterial prey. Microb Ecol 4:207–214
Taylor WD, Heynen ML (1987) Seasonal and vertical distribution of Ciliophora in Lake Ontario. Can J Fish Aquat Sci 44:2185–2191
Tilzer MM, Beese B (1988) The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz Z Hydrol 50:1–39
Tuffrau M (1976) Perfectionnments et pratique de la technique d'immpregnation au Protargol des infusoires cilies. Protistologica 3:91–98
Verity PG (1985) Grazing, respiration, excretion, and growth rates of tintinnids. Limnol Oceanogr 30:1268–1282
Verity PG (1986) Growth rates of natural tintinnid populations in Narragansett Bay. Mar Ecol Prog Ser 29:105–115
Verity PG, Villareal TA (1986) The relative food value of diatoms, dinoflagellates, flagellates and cyanobacteria for tintinnid ciliates. Arch Prot 131:71–84
Weisse T (in press) Trophic interactions among heterotrophic microplankton, nanoplankton and bacteria in Lake Constance (FRG). Hydrobiologia
Weisse T, Müller H (in press) Significance of heterotrophic nanoflagellates and ciliates in large lakes: Evidence from Lake Constance. In: Tilzer MM, Serruya C (eds) Ecological structure and function in large lakes. Science Technical Publishers, Madison, Wisconsin