Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4-Ag) dependent on shape factor
Tài liệu tham khảo
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99
Kang, 2006, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19, 181, 10.1080/08916150600619281
Ganji, 2014, Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé method, J. Mol. Liq., 193, 37, 10.1016/j.molliq.2013.12.034
Nourazar, 2017, Thermal-flow boundary layer analysis of nanofluid over a porous stretching cylinder under the magnetic field effect, Powder Technol., 317, 310, 10.1016/j.powtec.2017.05.010
Hosseinzadeh, 2017, Effect of variable lorentz forces on nanofluid flow in movable parallel plates utilizing analytical method, Case Stud. Therm. Eng., 10, 595, 10.1016/j.csite.2017.11.001
Mosayebidorcheh, 2017, Heat transfer analysis in carbon nanotube-water between rotating disks under thermal radiation conditions, J. Mol. Liq., 240, 258, 10.1016/j.molliq.2017.05.085
Ghadikolaei, 2018, Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet, Therm. Sci. Eng. Prog., 5, 309, 10.1016/j.tsep.2017.12.010
Ghasemi, 2016, Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems, J. Mol. Liq., 215, 88, 10.1016/j.molliq.2015.12.001
Rahimi-Gorji, 2016, Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field, J. Taiwan Inst. Chem. Eng., 67, 467, 10.1016/j.jtice.2016.08.001
Sajadifar, 2017, Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions, Eur. J. Mech. B. Fluids, 61, 25, 10.1016/j.euromechflu.2016.09.014
Sheikholeslami, 2016, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, J. Magn. Magn. Mater., 416(, 164, 10.1016/j.jmmm.2016.05.026
Sheikholeslami, 2016, Free convection of magnetic nanofluid considering MFD viscosity effect, J. Mol. Liq., 218, 393, 10.1016/j.molliq.2016.02.093
Sheikholeslami, 2016, Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects, J. Braz. Soc. Mech. Sci. Eng., 38, 1171, 10.1007/s40430-015-0459-5
Ghadikolaei, 2017, Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow, Powder Technol., 322, 428, 10.1016/j.powtec.2017.09.006
Kalidasan, 2017, Laminar natural convection of copper - Titania/water hybrid nanofluid in an open ended C - shaped enclosure with an isothermal block, J. Mol. Liq., 246, 251, 10.1016/j.molliq.2017.09.071
Rostamian, 2017, An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation, J. Mol. Liq., 231, 364, 10.1016/j.molliq.2017.02.015
Wei, 2017, Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications, Int. J. Heat Mass Transf., 107, 281, 10.1016/j.ijheatmasstransfer.2016.11.044
Adriana, 2017, Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches, Int. J. Heat Mass Transf., 104, 852, 10.1016/j.ijheatmasstransfer.2016.09.012
Ghalambaz, 2017, Phase-change heat transfer in a cavity heated from below: the effect of utilizing single or hybrid nanoparticles as additives, J. Taiwan Inst. Chem. Eng., 72, 104, 10.1016/j.jtice.2017.01.010
Sheikholeslami, 2015, Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model, J. Mol. Liq., 212, 117, 10.1016/j.molliq.2015.07.077
Sheikholeslami, 2016, Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field, Int. J. Heat Mass Transf., 92, 339, 10.1016/j.ijheatmasstransfer.2015.08.066
Sheikholeslami, 2016, Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects, J. King Saud Univ. – Sci., 28, 380, 10.1016/j.jksus.2015.06.003
Saedi Ardahaie, 2018, Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial, Inform. Med. Unlocked, 10, 71, 10.1016/j.imu.2017.10.007
Ghadikolaei, 2017, Boundary layer of micropolar dusty fluid with Tio2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet, J. Mol. Liq., 244, 374, 10.1016/j.molliq.2017.08.111
Nayak, 2017, 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation, Powder Technol., 315, 205, 10.1016/j.powtec.2017.04.017
Ghadikolaei, 2017, Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM, Case Stud. Therm. Eng., 10, 579, 10.1016/j.csite.2017.11.004
Ghasemi, 2016, Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study, J. Mol. Liq., 219, 890, 10.1016/j.molliq.2016.03.065
Rashidi, 2013, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62, 515, 10.1016/j.ijheatmasstransfer.2013.03.004
Rashidi, 2014, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, J. Mol. Liq., 198, 234, 10.1016/j.molliq.2014.06.037
Dogonchi, 2015, Non-spherical particles sedimentation in an incompressible Newtonian medium by Padé approximation, Powder Technol., 278, 248, 10.1016/j.powtec.2015.03.036
Sudarsana Reddy, 2017, MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/ absorption, Adv. Powder Technol., 28, 1008, 10.1016/j.apt.2017.01.005
Rashidi, 2011, Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation, Commun. Nonlinear Sci. Numer. Simul., 16, 1874, 10.1016/j.cnsns.2010.08.016
Atouei, 2015, Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods, Appl. Therm. Eng., 89, 299, 10.1016/j.applthermaleng.2015.05.084
Hatami, 2014, Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates, J. Taiwan Inst. Chem. Eng., 45, 2238, 10.1016/j.jtice.2014.05.018
Ghadikolaei, 2018, Fe3O4–(CH2OH)2 nanofluid analysis in a porous medium under MHD radiative boundary layer and dusty fluid, J. Mol. Liq., 258, 172, 10.1016/j.molliq.2018.02.106
Sheikholeslami, 2015, Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid, Comput. Methods Appl. Mech. Eng., 294, 299, 10.1016/j.cma.2015.06.010
Sheikholeslami, 2015, Ferrofluid heat transfer treatment in the presence of variable magnetic field, Eur. Phys. J. Plus, 130, 10.1140/epjp/i2015-15115-4
Sheikholeslami, 2015, Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid, J. Taiwan Inst. Chem. Eng., 56, 6, 10.1016/j.jtice.2015.03.035
Sheikholeslami, 2015, Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation, J. Taiwan Inst. Chem. Eng., 47, 617, 10.1016/j.jtice.2014.09.026
Khan, 2017, Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes, Appl. Therm. Eng., 113, 1107, 10.1016/j.applthermaleng.2016.11.104
Bohne, 1984, 9
Ahmed, 2017, Influence of thermal radiation and viscous dissipation on squeezed flow of water between Riga plates saturated with carbon nanotubes, Colloids Surf. A Physicochem. Eng. Asp., 522, 389, 10.1016/j.colsurfa.2017.02.083
Munawar, 2012, Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall, Comput. Math. Appl., 64, 1575, 10.1016/j.camwa.2012.01.003