Topologies of G-quadruplex: Biological functions and regulation by ligands
Tài liệu tham khảo
Bang, 1910, Untersuchungen über die Guanylsäure, Biochem. Z., 26, 293
Donohue, 1956, Hydrogen-bonded helical configurations of polynucleotides, Proc. Natl. Acad. Sci. U.S.A., 42, 60, 10.1073/pnas.42.2.60
Gellert, 1962, Helix formation by guanylic acid, Proc. Natl. Acad. Sci. U.S.A., 48, 2013, 10.1073/pnas.48.12.2013
Ralph, 1962, Secondary structure and aggregation in deoxyguanosine oligonucleotides, J. Am. Chem. Soc., 84, 2265, 10.1021/ja00870a055
Henderson, 1987, Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs, Cell, 51, 899, 10.1016/0092-8674(87)90577-0
Sen, 1988, Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis, Nature, 334, 364, 10.1038/334364a0
Sundquist, 1989, Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops, Nature, 342, 825, 10.1038/342825a0
Murchie, 1992, Retinoblastoma susceptibility genes contain 5’ sequences with a high propensity to form guanine-tetrad structures, Nucleic Acids Res., 20, 49, 10.1093/nar/20.1.49
Simonsson, 1998, DNA tetraplex formation in the control region of c-myc, Nucleic Acids Res., 26, 1167, 10.1093/nar/26.5.1167
Simonsson, 2001, G-quadruplex DNA structures--variations on a theme, Biol. Chem., 382, 621, 10.1515/BC.2001.073
Ida, 2007, Direct 23Na NMR observation of mixed cations residing inside a G-quadruplex channel, Chem. Commun., 795, 10.1039/B613105K
Cesare Marincola, 2009, Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study, Magn. Reson. Chem., 47, 1036, 10.1002/mrc.2509
Smirnov, 2000, Lead is unusually effective in sequence-specific folding of DNA, J. Mol. Biol., 296, 1, 10.1006/jmbi.1999.3441
Smirnov, 2002, Pb EXAFS studies on DNA quadruplexes: identification of metal ion binding site, Biochemistry, 41, 12133, 10.1021/bi020310p
Kwan, 2007, Trivalent lanthanide metal ions promote formation of stacking G-quartets, Chem. Commun., 4286, 10.1039/b710299b
Chen, 1992, Sr2+ facilitates intermolecular G-quadruplex formation of telomeric sequences, Biochemistry, 31, 3769, 10.1021/bi00130a006
Pedroso, 2007, Induction of parallel human telomeric G-quadruplex structures by Sr(2+), Biochem. Biophys. Res. Commun., 358, 298, 10.1016/j.bbrc.2007.04.126
Sen, 1992, Guanine quartet structures, Methods Enzymol., 211, 191, 10.1016/0076-6879(92)11012-8
Miyoshi, 2006, Hydration regulates thermodynamics of G- quadruplex formation under molecular crowding conditions, J. Am. Chem. Soc., 128, 7957, 10.1021/ja061267m
Zheng, 2010, Molecular crowding creates an essential environment for the formation of stable G-quadruplexes in long double-stranded DNA, Nucleic Acids Res., 38, 327, 10.1093/nar/gkp898
Miller, 2010, Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3’ sequence of d(AG3(TTAG3)3), J. Am. Chem. Soc., 132, 17105, 10.1021/ja105259m
Lannan, 2012, Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory, J. Am. Chem. Soc., 134, 15324, 10.1021/ja303499m
Tateishi-Karimata, 2014, Structure, stability and behaviour of nucleic acids in ionic liquids, Nucleic Acids Res., 42, 8831, 10.1093/nar/gku499
Zahler, 1991, Inhibition of telomerase by G-quartet DNA structures, Nature, 350, 718, 10.1038/350718a0
Huppert, 2005, Prevalence of quadruplexes in the human genome, Nucleic Acids Res., 33, 2908, 10.1093/nar/gki609
Todd, 2005, Highly prevalent putative quadruplex sequence motifs in human DNA, Nucleic Acids Res., 33, 2901, 10.1093/nar/gki553
Chambers, 2015, High-throughput sequencing of DNA G-quadruplex structures in the human genome, Nat. Biotechnol., 33, 877, 10.1038/nbt.3295
Sun, 1997, Inhibition of human telomerase by a G-quadruplex-interactive compound, J. Med. Chem., 40, 2113, 10.1021/jm970199z
Tauchi, 2003, Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways, Oncogene, 22, 5338, 10.1038/sj.onc.1206833
Incles, 2004, A G- quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells, Mol. Cancer Ther., 1201, 10.1158/1535-7163.1201.3.10
Tahara, 2006, G-quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3’ telomeric overhang in cancer cells, Oncogene, 25, 1955, 10.1038/sj.onc.1209217
Gunaratnam, 2007, Mechanism of acridine-based telomerase inhibition and telomere shortening, Biochem. Pharmacol., 74, 679, 10.1016/j.bcp.2007.06.011
Phatak, 2007, Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism, Br. J. Canc., 96, 1223, 10.1038/sj.bjc.6603691
Salvati, 2007, Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect, J. Clin. Investig., 117, 3236, 10.1172/JCI32461
Pennarun, 2008, Role of ATM in the telomere response to the G-quadruplex ligand 360A, Nucleic Acids Res., 36, 1741, 10.1093/nar/gkn026
Rizzo, 2009, Stabilization of quadruplex DNA perturbs telomere replication leading to the activation of an ATR-dependent ATM signaling pathway, Nucleic Acids Res., 37, 5353, 10.1093/nar/gkp582
Zhou, 2009, G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells, Mol. Cancer Ther., 8, 3203, 10.1158/1535-7163.MCT-09-0244
Marcu, 1992, Myc function and regulation, Annu. Rev. Biochem., 61, 809, 10.1146/annurev.bi.61.070192.004113
Dang, 1999, c-Myc target genes involved in cell growth, apoptosis, and metabolism, Mol. Cell. Biol., 19, 1, 10.1128/MCB.19.1.1
Jaattela, 2004, Multiple cell death pathways as regulators of tumour initiation and progression, Oncogene, 23, 2746, 10.1038/sj.onc.1207513
Brooks, 2009, The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics, Nat. Rev. Cancer, 9, 849, 10.1038/nrc2733
Grand, 2002, The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo, Mol. Cancer Ther., 1, 565
Matsugami, 2003, Intramolecular higher order packing of parallel quadruplexes comprising a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad of GGA triplet repeat DNA, J. Biol. Chem., 278, 28147, 10.1074/jbc.M303694200
Palumbo, 2008, A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity, Nucleic Acids Res., 36, 1755, 10.1093/nar/gkm1069
Wang, 2010, Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives, J. Med. Chem., 53, 4390, 10.1021/jm100445e
Bejugam, 2007, Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression, J. Am. Chem. Soc., 129, 12926, 10.1021/ja075881p
Sun, 2005, Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents, Nucleic Acids Res., 33, 6070, 10.1093/nar/gki917
Perry, 1998, 1,4- and 2,6-disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase, J. Med. Chem., 41, 3253, 10.1021/jm9801105
Perry, 1998, Human telomerase inhibition by regioisomeric disubstituted amidoanthracene-9,10-diones, J. Med. Chem., 41, 4873, 10.1021/jm981067o
Neidle, 2000, Structure-activity relationships among guanine-quadruplex telomerase inhibitors, Pharmacol, Ther, 85, 133
Anantha, 1998, Porphyrin binding to quadrupled T4G4, Biochemistry, 37, 2709, 10.1021/bi973009v
Wheelhouse, 1998, Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA, J. Am. Chem. Soc., 120, 3261, 10.1021/ja973792e
Han, 1999, Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. structural basis for the differential effects on telomerase inhibition, J. Am. Chem. Soc., 121, 3561, 10.1021/ja984153m
Phan, 2005, Small-molecule interaction with a five- guanine-tract G-quadruplex structure from the human MYC promoter, Nat. Chem. Biol., 1, 167, 10.1038/nchembio723
Parkinson, 2007, Structural basis for binding of porphyrin to human telomeres, Biochemistry, 46, 2390, 10.1021/bi062244n
Drygin, 2009, Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis, Cancer Res., 69, 7653, 10.1158/0008-5472.CAN-09-1304
Chen, 2015, Stabilization of G-quadruplex DNA, inhibition of telomerase activity, and tumor cell apoptosis by organoplatinum(II) complexes with oxoisoaporphine, J. Med. Chem., 58, 2159, 10.1021/jm5012484
Gunaratnam, 2011, Targeting pancreatic cancer with a G-quadruplex ligand, Bioorg. Med. Chem., 19, 7151, 10.1016/j.bmc.2011.09.055
Collie, 2012, Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands, J. Am. Chem. Soc., 134, 2723, 10.1021/ja2102423
Hampel, 2013, Mechanism of the antiproliferative activity of some naphthalene diimide G-quadruplex ligands, Mol. Pharmacol., 83, 470, 10.1124/mol.112.081075
Micco, 2013, Structure-based design and evaluation of naphthalene diimide G- quadruplex ligands as telomere targeting agents in pancreatic cancer cells, J. Med. Chem., 56, 2959, 10.1021/jm301899y
Marchetti, 2018, Targeting multiple effector pathways in pancreatic ductal Adenocarcinoma with a G-quadruplex-binding small molecule, J. Med. Chem., 61, 2500, 10.1021/acs.jmedchem.7b01781
Yu, 2008, Chiral metallo-supramolecular complexes selectively recognize human telomeric G-quadruplex DNA, Nucleic Acids Res., 36, 5695, 10.1093/nar/gkn569
Qin, 2017, Metallo-supramolecular complexes enantioselectively eradicate cancer stem cells in vivo, J. Am. Chem. Soc., 139, 16201, 10.1021/jacs.7b07490
Kim, 2003, The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures, Cancer Res., 63, 3247
Gomez, 2006, The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP- POT1 dissociation from telomeres in human cells, Cancer Res., 66, 6908, 10.1158/0008-5472.CAN-06-1581
Gomez, 2006, Telomestatin-induced telomere uncapping is modulated by POT1 through G-overhang extension in HT1080 human tumor cells, J. Biol. Chem., 281, 38721, 10.1074/jbc.M605828200
Shalaby, 2013, G- quadruplexes as potential therapeutic targets for embryonal tumors, Molecules, 18, 12500, 10.3390/molecules181012500
Hasegawa, 2016, G- quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells, Biochem. Biophys. Res. Commun., 471, 75, 10.1016/j.bbrc.2016.01.176
Nakamura, 2017, Targeting glioma stem cells in vivo by a G- quadruplex-stabilizing synthetic macrocyclic hexaoxazole, Sci. Rep., 7, 3605, 10.1038/s41598-017-03785-8
Peng, 1997, 5-Aminolevulinic acid-based photodynamic therapy, Clin. Res. Future Chall. Canc., 79, 2282
Shioda, 2018, Targeting G-quadruplex DNA as cognitive function therapy for ATR-X syndrome, Nat. Med., 24, 802, 10.1038/s41591-018-0018-6
Ou, 2008, G-quadruplexes: targets in anticancer drug design, ChemMedChem, 3, 690, 10.1002/cmdc.200700300
Huang, 2009, Bisbenzimidazole to benzobisimidazole: from binding B-form duplex DNA to recognizing different modes of telomere G-quadruplex, Chem. Commun., 902, 10.1039/b819789j
Takahashi, 2017, Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase, Proc. Natl. Acad. Sci. U.S.A., 114, 9605, 10.1073/pnas.1704258114
Engelhard, 2017, Copper-induced topology switching and thrombin inhibition with telomeric DNA G-quadruplexes, Angew. Chem. Int. Ed., 56, 11640, 10.1002/anie.201705724
Ai, 2018, Insight into how telomeric G-quadruplexes enhance the peroxidase activity of cellular hemin, Chem. Asian J., 13, 1805, 10.1002/asia.201800464
Filitcheva, 2019, alpha-2’-Deoxyguanosine can switch DNA G-quadruplex topologies from antiparallel to parallel, Org. Biomol. Chem., 17, 4031, 10.1039/C9OB00360F
Masai, 2019, Rif1 promotes association of G-quadruplex (G4) by its specific G4 binding and oligomerization activities, Sci. Rep., 9, 8618, 10.1038/s41598-019-44736-9
Aboul-ela, 1992, NMR study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T), Nature, 360, 280, 10.1038/360280a0
Smith, 1992, Quadruplex structure of Oxytricha telomeric DNA oligonucleotides, Nature, 356, 164, 10.1038/356164a0
Wang, 1992, Guanine residues in d(T2AG3) and d(T2G4) form parallel- stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution, Biochemistry, 31, 8112, 10.1021/bi00150a002
Greene, 1995, Influence of the glycosidic torsion angle on 13C and 15N shifts in guanosine nucleotides: investigations of G-tetrad models with alternating syn and anti bases, J. Biomol. NMR, 5, 333, 10.1007/BF00182274
Catasti, 1996, Structure-function correlations of the insulin-linked polymorphic region, J. Mol. Biol., 264, 534, 10.1006/jmbi.1996.0659
Cheng, 2018, Loop permutation affects the topology and stability of G-quadruplexes, Nucleic Acids Res., 46, 9264, 10.1093/nar/gky757
Di Fonzo, 2019, Crowding and conformation interplay on human DNA G-quadruplex by ultraviolet resonant Raman scattering, Phys. Chem. Chem. Phys., 21, 2093, 10.1039/C8CP04728F
Dias, 1994, Chemical probe for glycosidic conformation in telomeric DNAs, J. Am. Chem. Soc., 116, 4479, 10.1021/ja00089a048
Esposito, 2004, Effects of an 8-bromodeoxyguanosine incorporation on the parallel quadruplex structure [d(TGGGT)]4, Org, Biomol. Chem., 2, 313, 10.1039/b314672c
Xu, 2006, The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution, Bioorg. Med. Chem., 14, 5584, 10.1016/j.bmc.2006.04.033
Campbell, 2007, Crystallographic studies of quadruplex nucleic acids, Methods, 43, 252, 10.1016/j.ymeth.2007.08.005
Matsugami, 2007, Structure of a human telomeric DNA sequence stabilized by 8-bromoguanosine substitutions, as determined by NMR in a K+ solution, FEBS J., 274, 3545, 10.1111/j.1742-4658.2007.05881.x
Webba da Silva, 2007, NMR methods for studying quadruplex nucleic acids, Methods, 43, 264, 10.1016/j.ymeth.2007.05.007
Lim, 2009, Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers, J. Am. Chem. Soc., 131, 4301, 10.1021/ja807503g
Kuryavyi, 2010, Solution structures of all parallel-stranded monomeric and dimeric G-quadruplex scaffolds of the human c-kit2 promoter, Nucleic Acids Res., 38, 6757, 10.1093/nar/gkq558
Sakamoto, 2011, Development of a potassium ion sensor for 19F magnetic resonance chemical shift imaging based on fluorine-labeled thrombin aptamer, Chem. Lett., 40, 720, 10.1246/cl.2011.720
Adrian, 2012, NMR spectroscopy of G-quadruplexes, Methods, 57, 11, 10.1016/j.ymeth.2012.05.003
Wei, 2012, Crystal structure of a c-kit promoter quadruplex reveals the structural role of metal ions and water molecules in maintaining loop conformation, Nucleic Acids Res., 40, 4691, 10.1093/nar/gks023
Bazzicalupi, 2013, The crystal structure of human telomeric DNA complexed with berberine: an interesting case of stacked ligand to G-tetrad ratio higher than 1:1, Nucleic Acids Res., 41, 632, 10.1093/nar/gks1001
Chung, 2013, Solution structure of an intramolecular (3 + 1) human telomeric G-quadruplex bound to a telomestatin derivative, J. Am. Chem. Soc., 135, 13495, 10.1021/ja405843r
Lim, 2013, Structure of the human telomere in Na+ solution: an antiparallel (2+2) G-quadruplex scaffold reveals additional diversity, Nucleic Acids Res., 41, 10556, 10.1093/nar/gkt771
Chung, 2014, Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC(3), Angew. Chem. Int. Ed., 53, 999, 10.1002/anie.201308063
Kotar, 2016, NMR structure of a triangulenium-based long-lived fluorescence probe bound to a G- quadruplex, Angew. Chem. Int. Ed., 55, 12508, 10.1002/anie.201606877
Bao, 2017, A simple and sensitive 19F NMR approach for studying the interaction of RNA G-quadruplex with ligand molecule and protein, Chemistry, 2, 4170
Bao, 2017, Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy, Nucleic Acids Res., 45, 5501, 10.1093/nar/gkx109
Ishizuka, 2017, Studying DNA G-quadruplex aptamer by 19F NMR, ACS Omega, 2, 8843, 10.1021/acsomega.7b01405
Bao, 2019, Hybrid-type and two-tetrad antiparallel telomere DNA G- quadruplex structures in living human cells, Nucleic Acids Res., 47, 4940, 10.1093/nar/gkz276
Paramasivan, 2007, Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding, Methods, 43, 324, 10.1016/j.ymeth.2007.02.009
Kypr, 2009, Circular dichroism and conformational polymorphism of DNA, Nucleic Acids Res., 37, 1713, 10.1093/nar/gkp026
Masiero, 2010, A non-empirical chromophoric interpretation of CD spectra of DNA G-quadruplex structures, Org. Biomol. Chem., 8, 2683, 10.1039/c003428b
Karsisiotis, 2011, Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism, Angew. Chem. Int. Ed., 50, 10645, 10.1002/anie.201105193
Vorlickova, 2012, Circular dichroism and guanine quadruplexes, Methods, 57, 64, 10.1016/j.ymeth.2012.03.011
Randazzo, 2013, Circular dichroism of quadruplex structures, Top. Curr. Chem., 330, 67, 10.1007/128_2012_331
Marchand, 2016, Folding and misfolding pathways of G-quadruplex DNA, Nucleic Acids Res., 44, 10999, 10.1093/nar/gkw970
Marchand, 2018, Thermal denaturation of DNA G- quadruplexes and their complexes with ligands: thermodynamic analysis of the multiple states revealed by mass spectrometry, J. Am. Chem. Soc., 140, 12553, 10.1021/jacs.8b07302
Gros, 2007, Guanines are a quartet’s best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes, Nucleic Acids Res., 35, 3064, 10.1093/nar/gkm111
Smargiasso, 2008, G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation, J. Am. Chem. Soc., 130, 10208, 10.1021/ja801535e
Yuan, 2011, Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation, Mass spectrom, Rev, 30, 1121
Balthasart, 2013, Ammonium ion binding to DNA G-quadruplexes: do electrospray mass spectra faithfully reflect the solution-phase species?, J. Am. Soc. Mass Spectrom., 24, 1, 10.1007/s13361-012-0499-3
Marchand, 2014, Native electrospray mass spectrometry of DNA G- quadruplexes in potassium solution, J. Am. Soc. Mass Spectrom., 25, 1146, 10.1007/s13361-014-0890-3
Del Villar-Guerra, 2018, G-quadruplex secondary structure obtained from circular dichroism spectroscopy, Angew. Chem. Int. Ed., 57, 7171, 10.1002/anie.201709184
Wright, 1997, Normal human chromosomes have long G-rich telomeric overhangs at one end, Genes Dev., 11, 2801, 10.1101/gad.11.21.2801
Wang, 1993, Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex, Structure, 1, 263, 10.1016/0969-2126(93)90015-9
Parkinson, 2002, Crystal structure of parallel quadruplexes from human telomeric DNA, Nature, 417, 876, 10.1038/nature755
Luu, 2006, Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold, J. Am. Chem. Soc., 128, 9963, 10.1021/ja062791w
Phan, 2007, Structure of two intramolecular G- quadruplexes formed by natural human telomere sequences in K+ solution, Nucleic Acids Res., 35, 6517, 10.1093/nar/gkm706
Dai, 2007, Structure of the intramolecular human telomeric G-quadruplex in potassium solution: a novel adenine triple formation, Nucleic Acids Res., 35, 2440, 10.1093/nar/gkm009
Dai, 2007, Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence, Nucleic Acids Res., 35, 4927, 10.1093/nar/gkm522
Zhang, 2010, Structure of a two-G-tetrad intramolecular G-quadruplex formed by a variant human telomeric sequence in K+ solution: insights into the interconversion of human telomeric G-quadruplex structures, Nucleic Acids Res., 38, 1009, 10.1093/nar/gkp1029
Heddi, 2011, Structure of human telomeric DNA in crowded solution, J. Am. Chem. Soc., 133, 9824, 10.1021/ja200786q
Liu, 2019, A chair-type G-quadruplex structure formed by a human telomeric variant DNA in K(+) solution, Chem. Sci., 10, 218, 10.1039/C8SC03813A
Geng, 2019, The crystal structure of an antiparallel chair-type G-quadruplex formed by Bromo-substituted human telomeric DNA, Nucleic Acids Res., 47, 5395, 10.1093/nar/gkz221
Ambrus, 2005, Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G- quadruplex stabilization, Biochemistry, 44, 2048, 10.1021/bi048242p
Phan, 2007, Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter, J. Am. Chem. Soc., 129, 4386, 10.1021/ja068739h
Hsu, 2009, A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics, J. Am. Chem. Soc., 131, 13399, 10.1021/ja904007p
Agrawal, 2013, Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes, Nucleic Acids Res., 41, 10584, 10.1093/nar/gkt784
Dai, 2006, NMR solution structure of the major G-quadruplex structure formed in the human BCL2 promoter region, Nucleic Acids Res., 34, 5133, 10.1093/nar/gkl610
Lim, 2010, Coexistence of two distinct G-quadruplex conformations in the hTERT promoter, J. Am. Chem. Soc., 132, 12331, 10.1021/ja101252n
Marathias, 2000, Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA, Nucleic Acids Res., 28, 1969, 10.1093/nar/28.9.1969
Rezler, 2005, Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure, J. Am. Chem. Soc., 127, 9439, 10.1021/ja0505088
Shin-ya, 2001, Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus, J. Am. Chem. Soc., 123, 1262, 10.1021/ja005780q
Kim, 2002, Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex, J. Am. Chem. Soc., 124, 2098, 10.1021/ja017308q
Seenisamy, 2005, Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure, J. Am. Chem. Soc., 127, 2944, 10.1021/ja0444482
Goncalves, 2006, Tetramethylpyridiniumporphyrazines--a new class of G-quadruplex inducing and stabilising ligands, Chem. Commun., 4685, 10.1039/B611731G
Rodriguez, 2007, Ligand-driven G-quadruplex conformational switching by using an unusual mode of I nteraction, Angew. Chem. Int. Ed., 46, 5405, 10.1002/anie.200605075
Huang, 2009, Bisbenzimidazole to benzobisimidazole: from binding B-form duplex DNA to recognizing different modes of telomereG-quadruplex, Chem. Commun., 902, 10.1039/b819789j
Diveshkumar, 2016, Specific stabilization of c-MYC and c-KIT G-quadruplex DNA structures by indolylmethyleneindanone scaffolds, Biochemistry, 55, 3571, 10.1021/acs.biochem.6b00120
Pany, 2016, Benzothiazole hydrazones of furylbenzamides preferentially stabilize c-MYC and c-KIT1 promoter G-quadruplex DNAs, Org. Biomol. Chem., 14, 5779, 10.1039/C6OB00138F
Iida, 2013, Macrocyclic polyoxazoles as G-quadruplex ligands, Chem. Rec., 13, 539, 10.1002/tcr.201300015
Tera, 2008, Macrocyclic hexaoxazoles as sequence- and mode-selective G-quadruplex binders, Angew. Chem. Int. Ed., 47, 5557, 10.1002/anie.200801235
Sakuma, 2016, Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA, Org. Biomol. Chem., 14, 5109, 10.1039/C6OB00437G
Gowan, 2001, Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes, Mol. Pharmacol., 60, 981, 10.1124/mol.60.5.981
Gavathiotis, 2003, Drug recognition and stabilisation of the parallel-stranded DNA quadruplex d(TTAGGGT)4 containing the human telomeric repeat, J. Mol. Biol., 334, 25, 10.1016/j.jmb.2003.09.018
Moorhouse, 2006, Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry, J. Am. Chem. Soc., 128, 15972, 10.1021/ja0661919
Moorhouse, 2008, Targeting telomerase and telomeres: a click chemistry approach towards highly selective G-quadruplex ligands, Mol. Biosyst., 4, 629, 10.1039/b801822g
Garner, 2009, Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures, Org. Biomol. Chem., 7, 4194, 10.1039/b910505k
Xu, 2009, Consecutive formation of G- quadruplexes in human telomeric-overhang DNA: a protective capping structure for telomere ends, Angew. Chem. Int. Ed., 48, 7833, 10.1002/anie.200903858
Abraham Punnoose, 2014, Interaction of G-quadruplexes in the full-Length 3′ human telomeric overhang, J. Am. Chem. Soc., 136, 18062, 10.1021/ja510079u
Ritson, 2012, A fragment based click chemistry approach towards hybrid G- quadruplex ligands: design, synthesis and biophysical evaluation, Tetrahedron, 68, 197, 10.1016/j.tet.2011.10.066
Cousins, 2014, Ligand selectivity in stabilising tandem parallel folded G-quadruplex motifs in human telomeric DNA sequences, Chem. Commun., 50, 15202, 10.1039/C4CC07487D
Hampel, 2010, Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells, Bioorg. Med. Chem. Lett, 20, 6459, 10.1016/j.bmcl.2010.09.066
Ma, 2018, Development of G-quadruplex ligands for selective induction of a parallel-type topology, Org. Biomol. Chem., 16, 7375, 10.1039/C8OB01702F
Czerwinska, 2014, Interactions of cyclic and non- cyclic naphthalene diimide derivatives with different nucleic acids, Bioorg. Med. Chem., 22, 2593, 10.1016/j.bmc.2014.03.034
Marchand, 2015, Ligand-induced conformational changes with cation ejection upon binding to human telomeric DNA G-quadruplexes, J. Am. Chem. Soc., 137, 750, 10.1021/ja5099403
De Cian, 2007, Quadruplex ligands may act as molecular chaperones for tetramolecular quadruplex formation, Nucleic Acids Res., 35, 2483, 10.1093/nar/gkm098
Granotier, 2005, Preferential binding of a G-quadruplex ligand to human chromosome ends, Nucleic Acids Res., 33, 4182, 10.1093/nar/gki722
De Cian, 2007, Highly efficient G-quadruplex recognition by bisquinolinium compounds, J. Am. Chem. Soc., 129, 1856, 10.1021/ja067352b
Marchand, 2016, Selective and cooperative ligand binding to antiparallel human telomeric DNA G-quadruplexes, Chem. Eur J., 22, 9551, 10.1002/chem.201601937
He, 2016, Octahedral ruthenium complexes selectively stabilize G-quadruplexes, Chem. Commun., 52, 8095, 10.1039/C6CC03117J
Wang, 2012, Molecular engineering of G-quadruplex ligands based on solvent effect of polyethylene glycol, Nucleic Acids Res., 40, 8711, 10.1093/nar/gks578
Wang, 2016, A novel transition pathway of ligand-induced topological conversion from hybrid forms to parallel forms of human telomeric G-quadruplexes, Nucleic Acids Res., 44, 3958, 10.1093/nar/gkw145
Kovaleva, 2014, Preferential DNA photocleavage potency of Zn(II) over Ni(II) derivatives of carboxymethyl tetracationic porphyrin: the role of the mode of binding to DNA, Eur. Biophys. J., 43, 545, 10.1007/s00249-014-0984-7
Beniaminov, 2016, Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin, Nucleic Acids Res., 44, 10031
Xie, 2018, Topology-selective, fluorescent "light-up" probes for G-quadruplex DNA based on photoinduced electron transfer, Chem. Eur J., 24, 12638, 10.1002/chem.201801701
Zhang, 2015, Selective lighting up of epiberberine alkaloid fluorescence by fluorophore-switching aptamer and stoichiometric targeting of human telomeric DNA G-quadruplex multimer, Anal. Chem., 87, 730, 10.1021/ac503730j
Lin, 2018, Molecular recognition of the hybrid-2 human telomeric G-quadruplex by epiberberine: insights into conversion of telomeric G-quadruplex structures, Angew. Chem. Int. Ed., 57, 10888, 10.1002/anie.201804667
Dai, 2007, Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence, Nucleic Acids Res., 35, 4927, 10.1093/nar/gkm522
Cao, 2016, Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore, Nat. Nanotechnol., 11, 713, 10.1038/nnano.2016.66
Ying, 2013, Nanopore-based sequencing and detection of nucleic acids, Angew. Chem. Int. Ed., 52, 13154, 10.1002/anie.201303529