Active flight increases the gain of visual motion processing in Drosophila

Nature Neuroscience - Tập 13 Số 3 - Trang 393-399 - 2010
Gaby Maimon1, Andrew Straw1, Michael H. Dickinson1
1Divisions of Biology and Engineering and Applied Sciences, California Institute of Technology, Pasadena, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Strausfeld, N.J. Atlas of an Insect Brain 214 (Springer-Verlag, 1976).

Taylor, G.K. & Krapp, H.G. Sensory systems and flight stability: what do insects measure and why? in Insect Mechanics and Control: Advances in Insect Physiology, Vol. 34 (eds. Casas, J. & Simpson, S.J.) 231–316 (Academic Press, London, 2007).

Borst, A. & Haag, J. Neural networks in the cockpit of the fly. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 188, 419–437 (2002).

Hausen, K. Decoding of retinal image flow in insects. Rev. Oculomot. Res. 5, 203–235 (1993).

Krapp, H.G. & Wicklein, M. in The Senses: a Comprehensive Reference (eds. Basbaum, A.I., Kaneko, A. & Shepherd, G.M.) 131–204 (Academic Press, London, 2008).

Balint, C.N. & Dickinson, M.H. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Exp. Biol. 204, 4213–4226 (2001).

Frye, M.A. in Avances in Invertebrate Neurobiology (eds Greenspan, R. & North, G.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2007).

Gotz, K.G. Flight control in Drosophila by visual perception of motion. Kybernetik 6, 199–208 (1968).

Tammero, L.F. & Dickinson, M.H. Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).

Budick, S.A. & Dickinson, M.H. Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209, 3001–3017 (2006).

Wilson, R.I., Turner, G.C. & Laurent, G. Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366–370 (2004).

Joesch, M., Plett, J., Borst, A. & Reiff, D.F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

Turner, G.C., Bazhenov, M. & Laurent, G. Olfactory representations by Drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746 (2008).

Ramirez, J.M. & Pearson, K.G. Alteration of bursting properties in interneurons during locust flight. J. Neurophysiol. 70, 2148–2160 (1993).

Treue, S. & Maunsell, J.H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

Schmidt, M.F. & Konishi, M. Gating of auditory responses in the vocal control system of awake songbirds. Nat. Neurosci. 1, 513–518 (1998).

Rowell, C.H.F. Variable responsiveness of a visual interneurone in the free-moving locust and its relation to behaviour and arousal. J. Exp. Biol. 55, 727–747 (1971).

Rind, F.C., Santer, R.D. & Wright, G.A. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J. Neurophysiol. 100, 670–680 (2008).

Rosner, R., Egelhaaf, M. & Warzecha, A.K. Behavioural state affects motion-sensitive neurones in the fly visual system. J. Exp. Biol. 213, 331–338 (2010).

Tomioka, K. & Yamaguchi, T. Response modification of cricket sensory interneurons during flight. Zoolog. Sci. 1, 169–186 (1984).

Hengstenberg, R. Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 149, 179–193 (1982).

Scott, E.K., Raabe, T. & Luo, L. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Physiol. 454, 470–481 (2002).

Haag, J. & Borst, A. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat. Neurosci. 7, 628–634 (2004).

Krapp, H.G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).

Hausen, K. The lobula-complex of the fly: structure, function and significance in visual behavior. in Photoreception and Vision in Invertebrates (ed. Ali, M.A.) (Plenum Press, New York, 1984).

Hengstenberg, R. Spike responses of nonspiking visual inter-neurone. Nature 270, 338–340 (1977).

Haag, J., Theunissen, F. & Borst, A. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells. 2. Active membrane properties. J. Comput. Neurosci. 4, 349–369 (1997).

Gotz, K.G. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 35–46 (1987).

Graetzel, C.F., Fry, S.N. & Nelson, B.J. A 6,000-Hz computer vision system for real-time wing beat analysis of Drosophila. in BioRob. The First IEEE/RAS-EMBS Internation Conference on Biomdeical Robotics and Biomechatronics 1–6 (Institute of Electrical and Electronics Engineers, Pisa, Italy, 2006).

Heisenberg, M., Wonneberger, R. & Wolf, R. Optomotor-blindH31—a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol. 124, 287–296 (1978).

Gordon, S. & Dickinson, M.H. Role of calcium in the regulation of mechanical power in insect flight. Proc. Natl. Acad. Sci. USA 103, 4311–4315 (2006).

North, R.A. & Uchimura, N. 5-Hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J. Physiol. (Lond.) 417, 1–12 (1989).

Krapp, H.G., Hengstenberg, B. & Hengstenberg, R. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79, 1902–1917 (1998).

Longden, K.D. & Krapp, H.G. State-dependent performance of optic-flow processing interneurons. J. Neurophysiol. 102, 3606–3618 (2009).

Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in the Drosophila brain. J. Comp. Neurol. 513, 643–667 (2009).

Orchard, I., Ramirez, J.M. & Lange, A.B. A multifunctional role for octopamine in locust flight. Annu. Rev. Entomol. 38, 227–249 (1993).

Brembs, B., Christiansen, F., Pfluger, H.J. & Duch, C. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J. Neurosci. 27, 11122–11131 (2007).

Harris, R.A., O'Carroll, D.C. & Laughlin, S.B. Contrast gain reduction in fly motion adaptation. Neuron 28, 595–606 (2000).

Niven, J.E. & Laughlin, S.B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804 (2008).

Fetcho, J.R., Higashijima, S. & McLean, D.L. Zebrafish and motor control over the last decade. Brain Res. Rev. 57, 86–93 (2008).

Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. USA 58, 1112–1119 (1967).

Liu, G. et al. Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551–556 (2006).

Neuser, K., Triphan, T., Mronz, M., Poeck, B. & Strauss, R. Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008).

Strausfeld, N.J., Sinakevitch, I. & Okamura, J.Y. Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Dev. Neurobiol. 67, 1267–1288 (2007).

Reiser, M.B. & Dickinson, M.H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).

Maimon, G., Straw, A.D. & Dickinson, M.H. A simple vision-based algorithm for decision making in flying Drosophila. Curr. Biol. 18, 464–470 (2008).

Fry, S.N., Sayaman, R. & Dickinson, M.H. The aerodynamics of free-flight maneuvers in Drosophila. Science 300, 495–498 (2003).

Straw, A.D. & Dickinson, M.H. Motmot, an open-source toolkit for real-time video acquisition and analysis. Source Code Biol. Med. 4, 5 (2009).

Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

Barry, P.H. & Lynch, J.W. Liquid junction potentials and small-cell effects in patch-clamp analysis. J. Membr. Biol. 121, 101–117 (1991).