Homeostatic function of astrocytes: Ca2+ and Na+ signalling

Walter de Gruyter GmbH - Tập 3 - Trang 334-344 - 2012
Vladimir Parpura1,2,3,4, Alexei Verkhratsky3,4,5
1Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, USA
2Department of Biotechnology, University of Rijeka, Rijeka, Croatia
3IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
4Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, Spain
5Faculty of Life Sciences, The University of Manchester, Manchester, UK

Tóm tắt

The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K+ ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca2+ and Na+. Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca2+ and Na+ signalling.

Tài liệu tham khảo

Lenhossek M.v., Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes, Verh. Anat. Ges, 1891, 5, 193–221 Lenhossek M.v., Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung H. Kornfield, Berlin, 2nd Ed. 1895 Kimelberg H.K., Functions of mature mammalian astrocytes: a current view, Neuroscientist, 2010, 16, 79–106 Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353 Nedergaard M., Ransom B., Goldman S.A., New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci., 2003, 26, 523–530 Oberheim N.A., Goldman S.A., Nedergaard M., Heterogeneity of astrocytic form and function, Methods Mol. Biol., 2012, 814, 23–45 Oberheim N.A., Takano T., Han X., He W., Lin J.H., Wang F., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, 29, 3276–3287 Oberheim N.A., Wang X., Goldman S., Nedergaard M., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, 29, 547–553 Verkhratsky A., Physiology of neuronal-glial networking, Neurochem. Int., 2010, 57, 332–343 Verkhratsky A., Parpura V., Rodriguez J.J., Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”, Brain Res. Rev., 2011, 66, 133–151 Verkhratsky A., Butt A., Glial Neurobiology. A textbook, John Wiley & Sons, Chichester, 2007 Verkhratsky A., Toescu E.C., Neuronal-glial networks as substrate for CNS integration, J. Cell. Mol. Med., 2006, 10, 826–836 Verkhratsky A., Rodriguez J.J., Parpura V., Calcium signalling in astroglia, Mol. Cell. Endocrinol., 2012, 353, 45–56 Parpura V., Verkhratsky A., Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept, ASN Neuro, 2012, 4 Parpura V., Heneka M.T., Montana V., Oliet S.H., Schousboe A., Haydon P.G., et al., Glial cells in (patho)physiology, J. Neurochem., 2012, 121, 4–27 Parpura V., Verkhratsky A., The astrocyte excitability brief: From receptors to gliotransmission, Neurochem. Int., 2012, 61, 610–621 Hodgkin A.L., Huxley A.F., Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol., 1952, 116, 449–472 Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544 Katz B., Miledi R., Propagation of electric activity in motor nerve terminals, Proc. R. Soc. Lond. B. Biol. Sci., 1965, 161, 453–482 Katz B., Miledi R., The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. Lond. B Biol. Sci., 1965, 161, 496–503 Augustine G.J., How does calcium trigger neurotransmitter release?, Curr. Opin. Neurobiol., 2001, 11, 320–326 Barclay J.W., Morgan A., Burgoyne R.D., Calcium-dependent regulation of exocytosis, Cell Calcium, 2005, 38, 343–353 Dermietzel R., Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system?, Brain Res. Rev., 1998, 26, 176–183 Dermietzel R., Spray D.C., Gap junctions in the brain: where, what type, how many and why?, Trends Neurosci., 1993, 16, 186–192 Nagy J.I., Dudek F.E., Rash J.E., Update on connexins and gap junctions in neurons and glia in the mammalian nervous system, Brain Res. Rev., 2004, 47, 191–215 Theis M., Sohl G., Eiberger J., Willecke K., Emerging complexities in identity and function of glial connexins, Trends Neurosci., 2005, 28, 188–195 Dermietzel R., Gao Y., Scemes E., Vieira D., Urban M., Kremer M., et al., Connexin43 null mice reveal that astrocytes express multiple connexins, Brain Res. Rev., 2000, 32, 45–56 Guthrie P.B., Segal M., Kater S.B., Independent regulation of calcium revealed by imaging dendritic spines, Nature, 1991, 354, 76–80 Stout C.E., Costantin J.L., Naus C.C., Charles A.C., Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, J. Biol. Chem., 2002, 277, 10482–10488 Cotrina M.L., Lin J.H., Lopez-Garcia J.C., Naus C.C., Nedergaard M., ATP-mediated glia signaling, J. Neurosci., 2000, 20, 2835–2844 Arcuino G., Lin J.H., Takano T., Liu C., Jiang L., Gao Q., et al., Intercellular calcium signaling mediated by point-source burst release of ATP, Proc. Natl. Acad. Sci. USA, 2002, 99, 9840–9845 Di Castro M.A., Chuquet J., Liaudet N., Bhaukaurally K., Santello M., Bouvier D., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes, Nat. Neurosci., 2011, 14, 1276–1284 Panatier A., Vallee J., Haber M., Murai K.K., Lacaille J.C., Robitaille R., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, 2011, 146, 785–798 Shigetomi E., Tong X., Kwan K.Y., Corey D.P., Khakh B.S., TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3, Nat. Neurosci., 2011, 15, 70–80 Case R.M., Eisner D., Gurney A., Jones O., Muallem S., Verkhratsky A., Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system, Cell Calcium, 2007, 42, 345–350 Petersen O.H., Michalak M., Verkhratsky A., Calcium signalling: past, present and future, Cell Calcium, 2005, 38, 161–169 Solovyova N., Verkhratsky A., Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+]_recordings in single rat sensory neurones, Pflugers Arch., 2003, 446, 447–454 Petersen O.H., Verkhratsky A., Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells, Cell Calcium, 2007, 42, 373–378 Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P., Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol., 1992, 262, H1699–1704 Nicholls D.G., Mitochondria and calcium signaling, Cell Calcium, 2005, 38, 311–317 Berridge M.J., Bootman M.D., Roderick H.L., Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell. Biol., 2003, 4, 517–529 Berridge M.J., Lipp P., Bootman M.D., The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 2000, 1, 11–21 Burdakov D., Petersen O.H., Verkhratsky A., Intraluminal calcium as a primary regulator of endoplasmic reticulum function, Cell Calcium, 2005, 38, 303–310 Guerrero-Hernandez A., Dagnino-Acosta A., Verkhratsky A., An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool, Cell Calcium, 2010, 48, 143–149 Kopach O., Kruglikov I., Pivneva T., Voitenko N., Verkhratsky A., Fedirko N., Mitochondria adjust Ca(2+) signaling regime to a pattern of stimulation in salivary acinar cells, Biochim. Biophys. Acta, 2011, 1813, 1740–1748 Parekh A.B., Mitochondrial regulation of store-operated CRAC channels, Cell Calcium, 2008, 44, 6–13 Charles A.C., Dirksen E.R., Merrill J.E., Sanderson M.J., Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin, Glia, 1993, 7, 134–145 Charles A.C., Merrill J.E., Dirksen E.R., Sanderson M.J., Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron, 1991, 6, 983–992 Cornell Bell A.H., Finkbeiner S.M., Cooper M.S., Smith S.J., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 1990, 247, 470–473 Finkbeiner S.M., Glial calcium, Glia, 1993, 9, 83–104 Verkhratsky A., Kettenmann H., Calcium signalling in glial cells, Trends Neurosci., 1996, 19, 346–352 Verkhratsky A., Orkand R.K., Kettenmann H., Glial calcium: homeostasis and signaling function, Physiol. Rev., 1998, 78, 99–141 Kirischuk S., Moller T., Voitenko N., Kettenmann H., Verkhratsky A., ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 1995, 15, 7861–7871 Kirischuk S., Tuschick S., Verkhratsky A., Kettenmann H., Calcium signalling in mouse Bergmann glial cells mediated by a1-adrenoreceptors and H1 histamine receptors, Eur. J. Neurosci., 1996, 8, 1198–1208 Kirischuk S., Kirchhoff F., Matyash V., Kettenmann H., Verkhratsky A., Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release, Neuroscience, 1999, 92, 1051–1059 Porter J.T., McCarthy K.D., Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 1995, 65, 1515–1523 Zorec R., Araque A., Carmignoto G., Haydon P.G., Verkhratsky A., Parpura V., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro, 2012, 4, pii: e00080 Verkhratsky A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons, Physiol. Rev., 2005, 85, 201–279 Michalak M., Robert Parker J.M., Opas M., Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum, Cell Calcium, 2002, 32, 269–278 Baumann O., Walz B., Endoplasmic reticulum of animal cells and its organization into structural and functional domains, Int. Rev. Cytol., 2001, 205, 149–214 Berridge M.J., The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium, 2002, 32, 235–249 Alonso M.T., Barrero M.J., Michelena P., Carnicero E., Cuchillo I., Garcia A.G., et al., Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin, J. Cell Biol., 1999, 144, 241–254 Mogami H., Tepikin A.V., Petersen O.H., Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen, EMBO J., 1998, 17, 435–442 Solovyova N., Verkhratsky A., Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches, J. Neurosci. Methods, 2002, 122, 1–12 Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A., Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry, EMBO J., 2002, 21, 622–630 Verkhratsky A., Petersen O.H., The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death, Eur. J. Pharmacol., 2002, 447, 141–154 Agulhon C., Petravicz J., McMullen A.B., Sweger E.J., Minton S.K., Taves S.R., et al., What is the role of astrocyte calcium in neurophysiology?, Neuron, 2008, 59, 932–946 Matyash M., Matyash V., Nolte C., Sorrentino V., Kettenmann H., Requirement of functional ryanodine receptor type 3 for astrocyte migration, FASEB J., 2002, 16, 84–86 Verkhratsky A., Solovyova N., Toescu E.C., Calcium excitability of glial cells, In: Volterra A., Haydon P., Magistretti P. (Eds.), Glia in synaptic transmission, OUP, Oxford, 2002 Beck A., Nieden R.Z., Schneider H.P., Deitmer J.W., Calcium release from intracellular stores in rodent astrocytes and neurons in situ, Cell Calcium, 2004, 35, 47–58 Hua X., Malarkey E.B., Sunjara V., Rosenwald S.E., Li W.H., Parpura V., Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes, J. Neurosci. Res., 2004, 76, 86–97 Giaume C., Venance L., Intercellular calcium signaling and gap junctional communication in astrocytes, Glia, 1998, 24, 50–64 Scemes E., Giaume C., Astrocyte calcium waves: what they are and what they do, Glia, 2006, 54, 716–725 Verderio C., Bruzzone S., Zocchi E., Fedele E., Schenk U., De Flora A., et al., Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes, J. Neurochem., 2001, 78, 646–657 Bruzzone S., Verderio C., Schenk U., Fedele E., Zocchi E., Matteoli M., et al., Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones, J. Neurochem., 2004, 89, 264–272 Heidemann A.C., Schipke C.G., Kettenmann H., Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ, J. Biol. Chem., 2005, 280, 35630–35640 Singaravelu K., Deitmer J.W., Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes, Cell Calcium, 2006, 39, 143–153 Barcelo-Torns M., Lewis A.M., Gubern A., Barneda D., Bloor-Young D., Picatoste F., et al., NAADP mediates ATP-induced Ca2+ signals in astrocytes, FEBS Lett., 2011, 585, 2300–2306 Malarkey E.B., Parpura V., Mechanisms of transmitter release from astrocytes, In: Parpura V. Haydon P.G. (Eds.), Astrocytes in (patho) physiology of the nervous system, Springer, New York, 2009 Parpura V., Grubisic V., Verkhratsky A., Ca2+ sources for the exocytotic release of glutamate from astrocytes, Biochim. Biophys. Acta, 2011, 1813, 984–991 D’Ascenzo M., Fellin T., Terunuma M., Revilla-Sanchez R., Meaney D.F., Auberson Y.P., et al., mGluR5 stimulates gliotransmission in the nucleus accumbens, Proc. Natl. Acad. Sci. USA, 2007, 104, 1995–2000 Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P.G., Carmignoto G., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors, Neuron, 2004, 43, 729–743 Shigetomi E., Bowser D.N., Sofroniew M.V., Khakh B.S., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J. Neurosci., 2008, 28, 6659–6663 Putney J.W.Jr., A model for receptor-regulated calcium entry, Cell Calcium, 1986, 7, 1–12 Putney J.W.Jr., Capacitative calcium entry revisited, Cell Calcium, 1990, 11, 611–624 Parekh A.B., Putney J.W.Jr., Store-operated calcium channels, Physiol. Rev., 2005, 85, 757–810 Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, 2006, 441, 179–185 Putney J.W.Jr., Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here), Cell Calcium, 2007, 42, 103–110 Smyth J.T., Dehaven W.I., Jones B.F., Mercer J.C., Trebak M., Vazquez G., et al., Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP, Biochim. Biophys. Acta, 2006, 1763, 1147–1160 Pivneva T., Haas B., Reyes-Haro D., Laube G., Veh R.W., Nolte C., et al., Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ, Cell Calcium, 2008, 43, 591–601 Tuschick S., Kirischuk S., Kirchhoff F., Liefeldt L., Paul M., Verkhratsky A., et al., Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals, Cell Calcium, 1997, 21, 409–419 Golovina V.A., Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum, J. Physiol., 2005, 564, 737–749 Grimaldi M., Maratos M., Verma A., Transient receptor potential channel activation causes a novel form of [Ca2+]I oscillations and is not involved in capacitative Ca2+ entry in glial cells, J. Neurosci., 2003, 23, 4737–4745 Pizzo P., Burgo A., Pozzan T., Fasolato C., Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes, J. Neurochem., 2001, 79, 98–109 Malarkey E.B., Ni Y., Parpura V., Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 2008, 56, 821–835 Moreno C., Sampieri A., Vivas O., Pena-Segura C., Vaca L., STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes, Cell Calcium, 2012, in press, dx.doi.org/10.1016/j.ceca.2012.1008.1004 Lalo U., Pankratov Y., Parpura V., Verkhratsky A., Ionotropic receptors in neuronal-astroglial signalling: What is the role of „excitable“ molecules in non-excitable cells, Biochim. Biophys. Acta, 2011, 1813, 992–1002 Verkhratsky A., Steinhauser C., Ion channels in glial cells, Brain Res. Rev., 2000, 32, 380–412 Verkhratsky A., Krishtal O.A., Burnstock G., Purinoceptors on neuroglia, Mol. Neurobiol., 2009, 39, 190–208 Muller T., Moller T., Berger T., Schnitzer J., Kettenmann H., Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells, Science, 1992, 256, 1563–1566 Seifert G., Steinhauser C., Ionotropic glutamate receptors in astrocytes, Prog. Brain Res., 2001, 132, 287–299 Lalo U., Palygin O., North R.A., Verkhratsky A., Pankratov Y., Agedependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 2011, 10, 392–402 Lalo U., Pankratov Y., Kirchhoff F., North R.A., Verkhratsky A., NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 2006, 26, 2673–2683 Verkhratsky A., Kirchhoff F., NMDA receptors in glia, Neuroscientist, 2007, 13, 28–37 Oliveira J.F., Riedel T., Leichsenring A., Heine C., Franke H., Krugel U., et al., Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations, Cereb. Cortex, 2011, 21, 806–820 Palygin O., Lalo U., Verkhratsky A., Pankratov Y., Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 2010, 48, 225–231 Lalo U., Pankratov Y., Wichert S.P., Rossner M.J., North R.A., Kirchhoff F., et al., P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 2008, 28, 5473–5480 Franke H., Verkhratsky A., Burnstock G., Illes P., Pathophysiology of astroglial purinergic signalling, Purinergic Signal., 2012, 8, 629–657 Tai C., Zhu S., Zhou N., TRPA1: the central molecule for chemical sensing in pain pathway?, J. Neurosci., 2008, 28, 1019–1021 McNamara C.R., Mandel-Brehm J., Bautista D.M., Siemens J., Deranian K.L., Zhao M., et al., TRPA1 mediates formalin-induced pain, Proc. Natl. Acad. Sci. USA, 2007, 104, 13525–13530 McMahon S.B., Wood J.N., Increasingly irritable and close to tears: TRPA1 in inflammatory pain, Cell, 2006, 124, 1123–1125 Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S., Cold sensitivity of recombinant TRPA1 channels, Brain Res., 2007, 1160, 39–46 Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., et al., Molecular basis of infrared detection by snakes, Nature, 2010, 464, 1006–1011 Rose C.R., Ransom B.R., Intracellular sodium homeostasis in rat hippocampal astrocytes, J. Physiol., 1996, 491, 291–305 Reyes R.C., Verkhratsky A., Parpura V., Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 2012, 4, e00075 Unichenko P., Myakhar O., Kirischuk S., Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes, Glia, 2012, 60, 605–614 Kirischuk S., Parpura V., Verkhratsky A., Sodium dynamics: another key to astroglial excitability?, Trends Neurosci, 2012, 35, 497–506 Kiedrowski L., Wroblewski J.T., Costa E., Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate, Mol. Pharmacol., 1994, 45, 1050–1054 Knopfel T., Guatteo E., Bernardi G., Mercuri N.B., Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta, Eur. J. Neurosci., 1998, 10, 1926–1929 Pisani A., Calabresi P., Tozzi A., Bernardi G., Knopfel T., Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons, Eur. J. Neurosci., 1998, 10, 3572–3574 Kimelberg H.K., Pang S., Treble D.H., Excitatory amino acidstimulated uptake of 22Na+ in primary astrocyte cultures, J. Neurosci., 1989, 9, 1141–1149 Bernardinelli Y., Magistretti P.J., Chatton J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. USA, 2004, 101, 14937–14942 Rose C.R., Ransom B.R., Gap junctions equalize intracellular Na+ concentration in astrocytes, Glia, 1997, 20, 299–307 Kirischuk S., Kettenmann H., Verkhratsky A., Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ, FASEB J, 1997, 11, 566–572 Kirischuk S., Kettenmann H., Verkhratsky A., Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells, Pflugers Arch., 2007, 454, 245–252 Langer J., Stephan J., Theis M., Rose C.R., Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ, Glia, 2012, 60, 239–252 Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R., Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 2008, 56, 1138–1149 Langer J., Rose C.R., Synaptically induced sodium signals in hippocampal astrocytes in situ, J. Physiol., 2009, 587, 5859–5877 Shimizu H., Watanabe E., Hiyama T.Y., Nagakura A., Fujikawa A., Okado H., et al., Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing, Neuron, 2007, 54, 59–72 Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction, Pflugers Arch., 2004, 447, 465–468 Ren Q., Chen K., Paulsen I.T., TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Res., 2007, 35, D274–D279 Lytton J., Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport, Biochem. J., 2007, 406, 365–382 Minelli A., Castaldo P., Gobbi P., Salucci S., Magi S., Amoroso S., Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat, Cell Calcium, 2007, 41, 221–234 Paluzzi S., Alloisio S., Zappettini S., Milanese M., Raiteri L., Nobile M., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization, J. Neurochem., 2007, 103, 1196–1207 Rojas H., Colina C., Ramos M., Benaim G., Jaffe E.H., Caputo C., et al., Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Cai 2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes, J. Neurochem., 2007, 100, 1188–1202 Danbolt N.C., Glutamate uptake, Progr. Neurobiol., 2001, 65, 1–105 Hertz L., Zielke H.R., Astrocytic control of glutamatergic activity: astrocytes as stars of the show, Trends Neurosci., 2004, 27, 735–743 Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J., Agedependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?, Mol. Neurodegener., 2011, 6, 55 Attwell D., Barbour B., Szatkowski M., Nonvesicular release of neurotransmitter, Neuron, 1993, 11, 401–407 Palty R., Silverman W.F., Hershfinkel M., Caporale T., Sensi S.L., Parnis J., et al., NCLX is an essential component of mitochondrial Na+/Ca2+ exchange, Proc. Natl. Acad Sci. USA, 2010, 107, 436–441 Mackenzie B., Erickson J.D., Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family, Pflugers Arch., 2004, 447, 784–795 Ortinski P.I., Dong J., Mungenast A., Yue C., Takano H., Watson D.J., et al., Selective induction of astrocytic gliosis generates deficits in neuronal inhibition, Nat. Neurosci., 2010, 13, 584–591 Benz B., Grima G., Do K.Q., Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling, Neuroscience, 2004, 124, 377–386 Belanger M., Allaman I., Magistretti P.J., Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab., 2011, 14, 724–738 Pellerin L., Magistretti P.J., Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab., 2012, E-pub ahead of print, doi: 10.1038/jcbfm.2011.149 Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., et al., Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, 2011, 144, 810–823