Ultra-light Mg–Li alloy by design to achieve unprecedented high stiffness using the CALPHAD approach
Tài liệu tham khảo
Peng, 2022, Strengthening-toughening methods and mechanisms of Mg–Li alloy: a review, Rare Met., 41, 1176, 10.1007/s12598-021-01874-2
Feng, 2017, Progress in superlight Mg–Li alloys for the aerospace industry, Special Cast. Nonferrous Alloys, 37, 140
Sun, 2019, Recent progress in Mg–Li matrix composites, T. Nonferr. Metal. Soc., 29, 1, 10.1016/S1003-6326(18)64909-X
Mineta, 2020, High strength and plastic deformability of Mg–Li–Al alloy with dual BCC phase produced by a combination of heat treatment and multi-directional forging in channel die, Mater. Sci. Eng., A, 773
Li, 2017, Natural aging responses of duplex structured Mg–Li based alloys, Sci. Rep., 7, 40078, 10.1038/srep40078
Moosbrugger, 2017, Engineering properties of magnesium alloys, introduction to magnesium alloys, ASM Int., 1, 1
Ji, 2022, Origin of the age-hardening and age-softening response in Mg–Li–Zn based alloys, Acta Mater., 226, 117673, 10.1016/j.actamat.2022.117673
Song, 2020, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8, 1, 10.1016/j.jma.2020.02.003
Cao, 2018, Mechanical properties and microstructural evolution in a superlight Mg–7.28Li–2.19Al–0.091Y alloy fabricated by rolling, J. Alloys Compd., 745, 436, 10.1016/j.jallcom.2018.02.185
Zhao, 2016, Effect of Y content on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn alloy with duplex structure, Mater. Sci. Eng., A, 650, 240, 10.1016/j.msea.2015.10.067
Wang, 2021, Synergistically improved damping, elastic modulus and mechanical properties of rolled Mg–8Li–4Y–2Er–2Zn–0.6Zr alloy with twins and long-period stacking ordered phase, J. Alloys Compd., 881, 160663, 10.1016/j.jallcom.2021.160663
Zhang, 2015, Microstructure and mechanical properties of as-cast and extruded Mg–8Li–3Al–2Zn–0.5Nd alloy, Mater. Sci. Eng., A, 621, 198, 10.1016/j.msea.2014.10.076
Zhao, 2020, Development of a novel Mg–Y–Zn–Al–Li alloy with high elastic modulus and damping capacity, Mater. Sci. Eng., A, 790, 139744, 10.1016/j.msea.2020.139744
Wu, 2009, Microstructure, mechanical properties and aging behavior of Mg–5Li–3Al–2Zn–xAg, Mater. Sci. Eng., A, 520, 36, 10.1016/j.msea.2009.05.008
Wang, 2008, Microstructure and properties of Mg–8Li–1Al–1Ce alloy, Mater. Lett., 62, 1846, 10.1016/j.matlet.2007.10.017
Wu, 2011, Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg–Li–Al–Zn-based alloy, Mater. Sci. Eng., A, 528, 2174, 10.1016/j.msea.2010.11.063
Meng, 2009, Microstructures and properties of superlight Mg–Li–Al–Zn wrought alloys, J. Alloys Compd., 486, 722, 10.1016/j.jallcom.2009.07.047
Zhang, 2015, Microstructure and mechanical properties of as-cast and extruded Mg–8Li–3Al–2Zn–0.5Nd alloy, Mater. Sci. Eng., A, 621, 198, 10.1016/j.msea.2014.10.076
Chang, 2006, Mechanical properties and microstructures of various Mg–Li alloys, Mater. Lett., 60, 3272, 10.1016/j.matlet.2006.03.052
Chen, 2020, Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg−8Li−3Al−(1,2,3)Sn alloys, T. Nonferr. Metal. Soc., 30, 2079, 10.1016/S1003-6326(20)65362-6
Zhang, 2014, Microstructure and mechanical properties of Mg–9Li–3Al–xGd alloys, Mater. Sci. Technol., 31, 1035, 10.1179/1743284714Y.0000000711
Liu, 2020, Microstructural evolution and mechanical properties of as‐cast and as‐extruded Mg–14Li alloy with different Zn/Y and Zn/Gd addition, Adv. Eng. Mater., 22, 1, 10.1002/adem.202000480
Wu, 2012, Progress in the research of super-light high-strength Mg–Li based alloys and composites, Procedia Eng., 27, 1257, 10.1016/j.proeng.2011.12.580
Yu, 2002, Mechanical properties and creep resistance of Mg–Li composites reinforced by MgO/Mg2Si particles, T. Nonferrous Metal. Soc., 12, 1154
Yang, 2018, Influence of extrusion temperature on microstructure and mechanical behavior of duplex Mg–Li–Al–Sr alloy, J. Alloys Compd., 750, 696, 10.1016/j.jallcom.2018.03.319
Li, 2022, Hot tensile deformation behaviour and microstructure evolution of Al3La phase reinforced Mg–5Li–3Al–2Zn alloy formed in-situ by La2O3 particle, Mater. Char., 185, 111772, 10.1016/j.matchar.2022.111772
Kim, 2016, Effect of Ca addition on the plastic deformation behavior of extruded Mg–11Li–3Al–1Sn–0.4Mn alloy, J. Alloys Compd., 687, 821, 10.1016/j.jallcom.2016.06.205
Wang, 2019, Simultaneously improving strength and ductility of AZ91-type alloys with minor Gd addition, J. Alloys Compd., 803, 689, 10.1016/j.jallcom.2019.06.313
Maurya, 2020, Effect of heat-treatment on microstructure, mechanical and tribological properties of Mg–Li–Al based alloy, J. Mater. Res. Technol., 9, 4749, 10.1016/j.jmrt.2020.02.101
Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3
Ke, 2018, The time-of-flight small-angle neutron spectrometer at China spallation neutron source, Sci. Rep., 29, 14
Yamamoto, 2003, Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys, Mater. Trans., 44, 619, 10.2320/matertrans.44.619
Liang, 2021, Microstructure and mechanical properties of as-cast and solid solution treated Mg−8Li−xAl−yZn alloys, T. Nonferr. Metal. Soc., 31, 925, 10.1016/S1003-6326(21)65550-4
Zhu, 2014, Influence of the combined addition of Y and Nd on the microstructure and mechanical properties of Mg–Li alloy, Mater. Des., 57, 245, 10.1016/j.matdes.2013.12.057
Guo, 2014, Influences of solid solution parameters on the microstructure and hardness of Mg–9Li–6Al and Mg–9Li–6Al–2Y, Mater. Des., 53, 528, 10.1016/j.matdes.2013.07.011
Labusch, 1970, A Statistical theory of solid solution hardening, Phys. Status Solidi B, 41, 659, 10.1002/pssb.19700410221
Yan, 2010, Target tracking and obstacle avoidance for multi-agent systems, Int. J. Autom. Comput., 7, 550, 10.1007/s11633-010-0539-z
Kim, 2014, Microstructure and mechanical properties of Mg–xLi–3Al–1Sn–0.4Mn alloys (x = 5, 8 and 11 wt%), J. Alloys Compd., 583, 15, 10.1016/j.jallcom.2013.08.154
Ouyang, 2019, Microstructure and mechanical properties of as-cast Mg−8Li−xZn−yGd (x=1, 2, 3, 4; y=1, 2) alloys, T. Nonferr. Metal. Soc., 29, 1211, 10.1016/S1003-6326(19)65028-4
Zhao, 2016, Influence of heat treatment on microstructure and mechanical properties of as-cast Mg–8Li–3Al–2Zn–xY alloy with duplex structure, Mater. Sci. Eng., A, 669, 87, 10.1016/j.msea.2016.05.085
Xu, 2018, The effect of solid solute and precipitate phase on Young's modulus of binary Mg–RE alloys, Adv. Eng. Mater., 20, 1800271, 10.1002/adem.201800271
Gao, 2009, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481, 379, 10.1016/j.jallcom.2009.02.131
Han, 2011, Basal-plane stacking-fault energies of Mg: a first-principles study of Li- and Al-alloying effects, Scripta Mater., 64, 693, 10.1016/j.scriptamat.2010.11.034
Kaya, 2017, Elasticity modulus and damping in some novel magnesium alloys, P. 6th Int. Confer. Magnes, Shenyang, 1
Zhang, 2021, Rapid screening alloying elements for improved corrosion resistance on the Mg(0001) surface using first principles calculations, Phys. Chem. Chem. Phys., 23, 26887, 10.1039/D1CP03868K
Ye, 2022, Effect of micron-Ti particles on microstructure and mechanical properties of Mg–3Al–1Zn based composites, Mater. Sci. Eng., A, 833, 142526, 10.1016/j.msea.2021.142526
Kumar, 2013, Serrated yielding during nanoindentation of thermomechanically processed novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys, J. Phys. D Appl. Phys., 46, 145304, 10.1088/0022-3727/46/14/145304
Satoh, 2013, Modeling of fluctuating interaction energy between a gliding interstitial cluster and solute atoms in random binary alloys, Philos. Mag. A, 93, 1652, 10.1080/14786435.2012.752884
Edalati, 2014, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion, Acta Mater., 69, 68, 10.1016/j.actamat.2014.01.036
Muraishi, 2009, Mixture rule for indentation derived Young's modulus in layered composites, Thin Solid Films, 518, 233, 10.1016/j.tsf.2009.07.137
Sharma, 2005, Inverse mixture rule of multiphase composite bodies, J. Reinforc. Plast. Compos., 24, 719, 10.1177/0731684405046082
Srivatsan, 1987, Effect of aging on the elastic modulus of an Al–Li–Mn alloy, J. Mater. Sci. Lett., 6, 453, 10.1007/BF01756796
Uesugi, 2005, Elastic constants of AlLi from first principles, Mater. Trans., 46, 1117, 10.2320/matertrans.46.1117
Guo, 2020, Effect of doping Zn atom on the structural stability, mechanical and thermodynamic properties of AlLi phase in Mg–Li alloys from first-principles calculations, Philos. Mag. A, 100, 1849, 10.1080/14786435.2020.1742397
Marquis, 2005, Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy, Acta Mater., 53, 4259, 10.1016/j.actamat.2005.05.025
Gao, 2022, Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel, Chin. Phys. B, 31, 56102, 10.1088/1674-1056/ac43aa
Geuser, 2012, Precipitate characterization in metallic systems by small-angle X-ray or neutron scattering, C. R. Phys., 13, 246, 10.1016/j.crhy.2011.12.008
Wang, 2020, Investigation of pore structures in shallow long maxi shale, south China, via large-area electron imaging and neutron scattering techniques, Energy Fuel., 34, 7974, 10.1021/acs.energyfuels.9b04538
Bahadur, 2014, Hierarchical pore morphology of cretaceous shale: a small-angle neutron scattering and ultrasmall-angle neutron scattering study, Energy Fuel., 28, 6336, 10.1021/ef501832k
Barnoush, 2012, Correlation between dislocation density and nanomechanical response during nanoindentation, Acta Mater., 60, 1268, 10.1016/j.actamat.2011.11.034
Gao, 1999, Mechanism based strain gradient plasticity, J. Mech. Phys. Solid., 47, 1239, 10.1016/S0022-5096(98)00103-3
Durst, 2008, Indentation size effect in spherical and pyramidal indentations, J. Phys. D Appl. Phys., 41, 74005, 10.1088/0022-3727/41/7/074005