Sediment ages and flux variations from depth profiles of 210Pb: lake and marine examples

Applied Radiation and Isotopes - Tập 50 - Trang 793-804 - 1999
J Carroll1, I Lerche2, J.D Abraham3, D.J Cisar4
1Akvaplan-niva AS, Fiolveien 15, 9005 Tromso, Norway
2Department of Geological Sciences, University of South Carolina, Columbia, SC 29208, USA
3Department of Geophysics, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401-1887, USA
4RUST Geotech Inc., U.S. Department of Energy, Grand Junction Projects Office, P.O. Box 14000, Grand Junction, CO 81502, USA

Tài liệu tham khảo

Appleby, 1978, The concentration of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment, Catena, 5, 1, 10.1016/S0341-8162(78)80002-2 Carroll, 1995, Model-determined sediment ages from depth profiles of radioisotopes: theory and examples using synthetic data, Nucl. Geophys., 9, 553 Chanton, 1989, Lead-210 sediment geochronology in a changing coastal environment, Geochim. Cosmochim. Acta, 47, 1791, 10.1016/0016-7037(83)90027-3 Feller, W., 1957. An Introduction to Probability Theory and Its Applications, vol. 1. John Wiley and Sons, New York, 461 pp Goldberg, 1962, Geochronological studies of deep-sea sediments by the Io/Th method, Geochim. Cosmochim. Acta, 26, 417, 10.1016/0016-7037(62)90112-6 Hahn, C.L., 1955. Reservoir sedimentation in Ohio. Ohio Dept. Nat. Res. Div. Water Bull., No. 24. 87 pp Klump, 1981, Biogeochemical cycling in an organic-rich coastal marine basin. 2. Nutrient sediment–water exchange processes, Geochim. Cosmochim. Acta, 45, 101, 10.1016/0016-7037(81)90267-2 Liu, 1991, A technique for disentangling temporal source and sediment variations from radioactive isotope measurements with depth, Nucl. Geophys., 5, 31 Martens, 1980, Biogeochemical cycling in an organic-rich coastal marine basin. 1. Methane sediment–water exchange processes, Geochim. Cosmochim. Acta, 44, 471, 10.1016/0016-7037(80)90045-9 Matisoff, G., 1994. Private communication McCall, 1984, 137Cs and 210Pb transport and geochronologies in urbanized reservoirs with rapidly increasing sedimentation rates, Chem. Geol., 44, 33, 10.1016/0009-2541(84)90066-4 Olsen, 1981, Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson Estuary sediments, J. Geophys. Res., 86, 11020, 10.1029/JC086iC11p11020 Punning, J.-M., Ilomets, M., Karofeld, E., Koff, T., Kozlova, M., Laugusta, R., Taure, I., Rajamäe, R. and Varvus, M., 1989. Technogeensed muutused biogeokeemilises aineringes. In: Ilomets, M. (Ed.), Kurtna järvestika looduslik seisund ja selle areng II. pp. 14–28 (in Estonian) Ritchie, 1990, Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review, J. Environ. Qual., 19, 215, 10.2134/jeq1990.00472425001900020006x Robbins, J.A., 1978. Geochemical and geophysical applications of radioactive lead isotopes. In: Nriago, J.P. (Ed.), Biogeochemistry of Lead. Elsevier, North Holland, pp. 285–393 Sagris, A., 1987. Môningate Kurtna järvestiku järvede veebilanisist. In Ilomets, M. (Ed.) Kurtna järvestiku looduslik seisund ja selle areng. pp. 144–147 (in Estonian) Varvus, 1993, Use of the 210Pb method in studies of the development and human-impact history of some Estorian Lakes, Holocene, 3, 34, 10.1177/095968369300300104