Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization
Tài liệu tham khảo
Singh, 2019, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115, 10.1016/j.desal.2018.12.015
Porada, 2013, Review on the science and Technology of Water Desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388, 10.1016/j.pmatsci.2013.03.005
Huang, 2017, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470, 10.1039/C6TA06733F
Suss, 2015, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8, 2296, 10.1039/C5EE00519A
Liu, 2015, Review on carbon-based composite materials for capacitive deionization, RSC Adv., 5, 15205, 10.1039/C4RA14447C
Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g
Kim, 2017, Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon N. Y., 122, 329, 10.1016/j.carbon.2017.06.077
Lu, 2012, Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun., 48, 6544, 10.1039/c2cc31777j
Paolella, 2017, A review on Hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives, J. Mater. Chem. A, 5, 18919, 10.1039/C7TA05121B
Ma, 2017, Energy storage materials derived from Prussian blue analogues, Sci. Bull., 62, 358, 10.1016/j.scib.2017.01.030
Lee, 2017, Rocking chair desalination battery based on Prussian blue electrodes, ACS Omega, 2, 1653, 10.1021/acsomega.6b00526
Kim, 2016, Na2FeP2O7 as a novel material for hybrid capacitive deionization, Electrochim. Acta, 203, 265, 10.1016/j.electacta.2016.04.056
Pasta, 2012, A desalination battery, Nano Lett., 12, 839, 10.1021/nl203889e
Suss, 2018, Water desalination with energy storage electrode materials, Joule, 2, 25, 10.1016/j.joule.2017.12.010
Byles, 2018, Ion removal performance, structural/compositional dynamics, and electrochemical stability of layered manganese oxide electrodes in hybrid capacitive deionization, ACS Appl. Mater. Interfaces, 10, 32313, 10.1021/acsami.8b09638
Lee, 2017, Metal-organic framework cathodes based on a vanadium Hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries, Adv. Energy Mater., 7, 10.1002/aenm.201601491
Porada, 2017, Nickel Hexacyanoferrate electrodes for continuous Cation intercalation desalination of brackish water, Electrochim. Acta, 255, 369, 10.1016/j.electacta.2017.09.137
Guo, 2017, A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism, Nanoscale, 9, 13305, 10.1039/C7NR03579A
Liu, 2015, Sodium Storage in Na-Rich NaxFeFe(CN)6 nanocubes, Nano Energy, 12, 386, 10.1016/j.nanoen.2015.01.012
Karyakin, 2001, 13, 813
Suss, 2017, Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes, J. Electrochem. Soc., 164, E270, 10.1149/2.1201709jes
Yoon, 2016, Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control, Desalination, 392, 46, 10.1016/j.desal.2016.03.019
Nativ, 2018, Separation of divalent and monovalent ions using flow-electrode capacitive deionization with Nanofiltration membranes, Desalination, 425, 123, 10.1016/j.desal.2017.10.026
Wang, 2019, Mechanism of selective ion removal in membrane capacitive deionization for water softening, Environ. Sci. Technol., 53, 5797, 10.1021/acs.est.9b00655
Kim, 2018, Ammonium removal from domestic wastewater using selective battery electrodes, Environ. Sci. Technol. Lett., 5, 578, 10.1021/acs.estlett.8b00334
Kim, 2017, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide, J. Colloid Interface Sci., 506, 644, 10.1016/j.jcis.2017.07.054
Chen, 2007, Highly stable nickel Hexacyanoferrate nanotubes for electrically switched ion exchange, Adv. Funct. Mater., 17, 2943, 10.1002/adfm.200700015
Oyarzun, 2018, Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation, Water Res. X, 1, 10.1016/j.wroa.2018.100008
Seo, 2010, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267, 10.1016/j.watres.2009.10.020
Lee, 2017, Selective Lithium recovery from aqueous solution using a modified membrane capacitive deionization system, Hydrometallurgy, 173, 283, 10.1016/j.hydromet.2017.09.005
Gabelich, 2002, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010, 10.1021/es0112745
Ikeshoji, 1986, Separation of alkali metal ions by intercalation into a Prussian blue electrode, J. Electrochem. Soc., 133, 2108, 10.1149/1.2108350
Bocarsly, 1982, Effects of surface structure on electrode charge transfer properties. Induction of ion selectivity at the chemically Derivatized Interface, J. Electroanal. Chem., 140, 167, 10.1016/0368-1874(82)85310-0
Rassat, 1999, Development of an electrically switched ion exchange process for selective ion separations, Sep. Purif. Technol., 15, 207, 10.1016/S1383-5866(98)00102-6
Lilga, 1997, Metal ion separations using electrically switched ion exchange, Sep. Purif. Technol., 11, 147, 10.1016/S1383-5866(97)00017-8
Suarez, 2006, Effect of SAR on water infiltration under a sequential rain-irrigation management system, Agric. Water Manag., 86, 150, 10.1016/j.agwat.2006.07.010
Zhang, 2010, Mechanisms of sodium uptake by roots of higher plants, Plant Soil, 326, 45, 10.1007/s11104-009-0076-0
Läuchli, 2007, Plant growth and development under salinity stress, 1
Smith, 2016, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling, J. Electrochem. Soc., 163, A530, 10.1149/2.0761603jes
Singh, 2018, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 64036, 10.1103/PhysRevApplied.9.064036
Wessells, 2012, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 6, 1688, 10.1021/nn204666v
Hawks, 2018, Performance metrics for the objective assessment of capacitive deionization systems, Water Res., 152, 126, 10.1016/j.watres.2018.10.074
Mizuno, 2013, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 117, 10877, 10.1021/jp311616s
Asai, 2018, Effects of the variation of metal substitution and electrolyte on the electrochemical reaction of metal Hexacyanoferrates, RSC Adv., 8, 37356, 10.1039/C8RA08091G
Wessells, 2012, The effect of insertion species on nanostructured open framework Hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes
Wang, 2013, Highly reversible open framework Nanoscale electrodes for divalent ion batteries, Nano Lett., 13, 5748, 10.1021/nl403669a
Wessells, 2011, Nickel Hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 11, 5421, 10.1021/nl203193q
Scholz, 2004, The formal potentials of solid metal hexacyanometalates, Angew. Chemie Int. Ed., 34, 2685, 10.1002/anie.199526851
Wang, 2015, Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials, Adv. Energy Mater., 5, 1, 10.1002/aenm.201401869
García-Jareño, 2003, EIS and ac-Electrogravimetry study of PB films in KCl, NaCl, and CsCl aqueous solutions, J. Phys. Chem. B, 107, 10.1021/jp035387h
Shrivastava, 2019, Linking capacity loss and retention of nickel Hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions, Phys. Chem. Chem. Phys., 21, 10.1039/C9CP04115J
Zhao, 2012, Time-dependent ion selectivity in capacitive charging of porous electrodes, J. Colloid Interface Sci., 384, 38, 10.1016/j.jcis.2012.06.022
Hou, 2013, A comparative study of Electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314, 124, 10.1016/j.desal.2012.12.029
Radmanesh, 2019, Enhanced selectivity and performance of heterogeneous Cation exchange membranes through addition of Sulfonated and protonated Montmorillonite, J. Colloid Interface Sci., 533, 658, 10.1016/j.jcis.2018.08.100
Rijnaarts, 2019, Layer-by-layer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion Selectivities, J. Memb. Sci., 570, 513, 10.1016/j.memsci.2018.10.074
Srimuk, 2018, Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide, ChemSusChem, 11, 2091, 10.1002/cssc.201800452
Shanbhag, 2017, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance, Langmuir, 33, 12580, 10.1021/acs.langmuir.7b02861
Peschke, 2002, Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas-phase ion−water molecule equilibria determinations, J. Phys. Chem. A, 102, 9978, 10.1021/jp9821127
Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011