Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization

Desalination - Tập 481 - Trang 114346 - 2020
Kaustub Singh1,2, Zexin Qian2,3, P.M. Biesheuvel2, Han Zuilhof1,4,5, Slawomir Porada2,6, Louis C.P.M. de Smet1,2
1Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
2Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
3Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
4School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, China
5Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
6Soft Matter, Fluidics and Interfaces Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Tài liệu tham khảo

Singh, 2019, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115, 10.1016/j.desal.2018.12.015 Porada, 2013, Review on the science and Technology of Water Desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388, 10.1016/j.pmatsci.2013.03.005 Huang, 2017, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470, 10.1039/C6TA06733F Suss, 2015, Water desalination via capacitive deionization: what is it and what can we expect from it?, Energy Environ. Sci., 8, 2296, 10.1039/C5EE00519A Liu, 2015, Review on carbon-based composite materials for capacitive deionization, RSC Adv., 5, 15205, 10.1039/C4RA14447C Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g Kim, 2017, Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon N. Y., 122, 329, 10.1016/j.carbon.2017.06.077 Lu, 2012, Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun., 48, 6544, 10.1039/c2cc31777j Paolella, 2017, A review on Hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives, J. Mater. Chem. A, 5, 18919, 10.1039/C7TA05121B Ma, 2017, Energy storage materials derived from Prussian blue analogues, Sci. Bull., 62, 358, 10.1016/j.scib.2017.01.030 Lee, 2017, Rocking chair desalination battery based on Prussian blue electrodes, ACS Omega, 2, 1653, 10.1021/acsomega.6b00526 Kim, 2016, Na2FeP2O7 as a novel material for hybrid capacitive deionization, Electrochim. Acta, 203, 265, 10.1016/j.electacta.2016.04.056 Pasta, 2012, A desalination battery, Nano Lett., 12, 839, 10.1021/nl203889e Suss, 2018, Water desalination with energy storage electrode materials, Joule, 2, 25, 10.1016/j.joule.2017.12.010 Byles, 2018, Ion removal performance, structural/compositional dynamics, and electrochemical stability of layered manganese oxide electrodes in hybrid capacitive deionization, ACS Appl. Mater. Interfaces, 10, 32313, 10.1021/acsami.8b09638 Lee, 2017, Metal-organic framework cathodes based on a vanadium Hexacyanoferrate Prussian blue analogue for high-performance aqueous rechargeable batteries, Adv. Energy Mater., 7, 10.1002/aenm.201601491 Porada, 2017, Nickel Hexacyanoferrate electrodes for continuous Cation intercalation desalination of brackish water, Electrochim. Acta, 255, 369, 10.1016/j.electacta.2017.09.137 Guo, 2017, A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism, Nanoscale, 9, 13305, 10.1039/C7NR03579A Liu, 2015, Sodium Storage in Na-Rich NaxFeFe(CN)6 nanocubes, Nano Energy, 12, 386, 10.1016/j.nanoen.2015.01.012 Karyakin, 2001, 13, 813 Suss, 2017, Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes, J. Electrochem. Soc., 164, E270, 10.1149/2.1201709jes Yoon, 2016, Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control, Desalination, 392, 46, 10.1016/j.desal.2016.03.019 Nativ, 2018, Separation of divalent and monovalent ions using flow-electrode capacitive deionization with Nanofiltration membranes, Desalination, 425, 123, 10.1016/j.desal.2017.10.026 Wang, 2019, Mechanism of selective ion removal in membrane capacitive deionization for water softening, Environ. Sci. Technol., 53, 5797, 10.1021/acs.est.9b00655 Kim, 2018, Ammonium removal from domestic wastewater using selective battery electrodes, Environ. Sci. Technol. Lett., 5, 578, 10.1021/acs.estlett.8b00334 Kim, 2017, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide, J. Colloid Interface Sci., 506, 644, 10.1016/j.jcis.2017.07.054 Chen, 2007, Highly stable nickel Hexacyanoferrate nanotubes for electrically switched ion exchange, Adv. Funct. Mater., 17, 2943, 10.1002/adfm.200700015 Oyarzun, 2018, Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation, Water Res. X, 1, 10.1016/j.wroa.2018.100008 Seo, 2010, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267, 10.1016/j.watres.2009.10.020 Lee, 2017, Selective Lithium recovery from aqueous solution using a modified membrane capacitive deionization system, Hydrometallurgy, 173, 283, 10.1016/j.hydromet.2017.09.005 Gabelich, 2002, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010, 10.1021/es0112745 Ikeshoji, 1986, Separation of alkali metal ions by intercalation into a Prussian blue electrode, J. Electrochem. Soc., 133, 2108, 10.1149/1.2108350 Bocarsly, 1982, Effects of surface structure on electrode charge transfer properties. Induction of ion selectivity at the chemically Derivatized Interface, J. Electroanal. Chem., 140, 167, 10.1016/0368-1874(82)85310-0 Rassat, 1999, Development of an electrically switched ion exchange process for selective ion separations, Sep. Purif. Technol., 15, 207, 10.1016/S1383-5866(98)00102-6 Lilga, 1997, Metal ion separations using electrically switched ion exchange, Sep. Purif. Technol., 11, 147, 10.1016/S1383-5866(97)00017-8 Suarez, 2006, Effect of SAR on water infiltration under a sequential rain-irrigation management system, Agric. Water Manag., 86, 150, 10.1016/j.agwat.2006.07.010 Zhang, 2010, Mechanisms of sodium uptake by roots of higher plants, Plant Soil, 326, 45, 10.1007/s11104-009-0076-0 Läuchli, 2007, Plant growth and development under salinity stress, 1 Smith, 2016, Na-ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling, J. Electrochem. Soc., 163, A530, 10.1149/2.0761603jes Singh, 2018, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 64036, 10.1103/PhysRevApplied.9.064036 Wessells, 2012, Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage, ACS Nano, 6, 1688, 10.1021/nn204666v Hawks, 2018, Performance metrics for the objective assessment of capacitive deionization systems, Water Res., 152, 126, 10.1016/j.watres.2018.10.074 Mizuno, 2013, Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+), J. Phys. Chem. C, 117, 10877, 10.1021/jp311616s Asai, 2018, Effects of the variation of metal substitution and electrolyte on the electrochemical reaction of metal Hexacyanoferrates, RSC Adv., 8, 37356, 10.1039/C8RA08091G Wessells, 2012, The effect of insertion species on nanostructured open framework Hexacyanoferrate battery electrodes, J. Electrochem. Soc., 159, A98, 10.1149/2.060202jes Wang, 2013, Highly reversible open framework Nanoscale electrodes for divalent ion batteries, Nano Lett., 13, 5748, 10.1021/nl403669a Wessells, 2011, Nickel Hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries, Nano Lett., 11, 5421, 10.1021/nl203193q Scholz, 2004, The formal potentials of solid metal hexacyanometalates, Angew. Chemie Int. Ed., 34, 2685, 10.1002/anie.199526851 Wang, 2015, Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials, Adv. Energy Mater., 5, 1, 10.1002/aenm.201401869 García-Jareño, 2003, EIS and ac-Electrogravimetry study of PB films in KCl, NaCl, and CsCl aqueous solutions, J. Phys. Chem. B, 107, 10.1021/jp035387h Shrivastava, 2019, Linking capacity loss and retention of nickel Hexacyanoferrate to a two-site intercalation mechanism for aqueous Mg2+ and Ca2+ ions, Phys. Chem. Chem. Phys., 21, 10.1039/C9CP04115J Zhao, 2012, Time-dependent ion selectivity in capacitive charging of porous electrodes, J. Colloid Interface Sci., 384, 38, 10.1016/j.jcis.2012.06.022 Hou, 2013, A comparative study of Electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314, 124, 10.1016/j.desal.2012.12.029 Radmanesh, 2019, Enhanced selectivity and performance of heterogeneous Cation exchange membranes through addition of Sulfonated and protonated Montmorillonite, J. Colloid Interface Sci., 533, 658, 10.1016/j.jcis.2018.08.100 Rijnaarts, 2019, Layer-by-layer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion Selectivities, J. Memb. Sci., 570, 513, 10.1016/j.memsci.2018.10.074 Srimuk, 2018, Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide, ChemSusChem, 11, 2091, 10.1002/cssc.201800452 Shanbhag, 2017, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance, Langmuir, 33, 12580, 10.1021/acs.langmuir.7b02861 Peschke, 2002, Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas-phase ion−water molecule equilibria determinations, J. Phys. Chem. A, 102, 9978, 10.1021/jp9821127 Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011